Advertisement

Plasma Physics Reports

, Volume 44, Issue 3, pp 369–377 | Cite as

Study of the Formation Time of a Self-Sustained Subnanosecond Discharge at High and Ultrahigh Gas Pressures

  • S. N. Ivanov
  • V. V. Lisenkov
Low-Temperature Plasma

Abstract

The formation times of self-sustained subnanosecond discharges in nitrogen at pressures of 1‒40 atm and in hydrogen at pressures of 1–60 atm are analyzed in terms of the avalanche model. In experiments, a subnanosecond voltage pulse with an amplitude of 102 ± 2 kV was applied to a 0.5-mm-long discharge gap with a uniformly distributed electric field (the curvature radii of both the cathode and anode ends were 1 cm). The rise time of the voltage pulse from 0.1 to 0.9 of its amplitude value was about 250 ps. Breakdown occurred at the leading edge of the pulse. The discharge formation time was measured at different gas pressures with a step of 5–10 atm. Analysis of the experimental results shows that, in nitrogen at pressures of 10–40 atm and in hydrogen at pressures of 20–50 atm, breakdown occurs earlier than the electron avalanche reaches its critical length and that the critical avalanche length lies in the range of (2–8) × 10–2 mm, which is one order of magnitude shorter than the discharge gap length. This means that the avalanche–streamer model is inapplicable in this case. The fast formation of a conducting channel under these conditions can be explained by ionization of gas by runaway electrons. In this case, the conducting column develops as a result of simultaneous development of a large number of electron avalanches in the gas volume. An increase in the hydrogen pressure from 50 to 60 atm leads to an abrupt increase in the discharge formation time by about 50%. As a result, the growth time of the electron avalanche to its critical length becomes shorter than the discharge formation time. In this case, the electrons cease to pass into the runaway regime and the discharge is initiated from the cathode due to field emission from microinhomogeneities on its surface. Under these conditions, the discharge formation time is well described by the avalanche–streamer model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].Google Scholar
  2. 2.
    Electrical Breakdown of Gases, Ed. by J. M. Meek and J. D. Craggs (Wiley, New York, 1978).zbMATHGoogle Scholar
  3. 3.
    G. A. Mesyats, Yu. I. Bychkov, and V. V. Kremnev, Sov. Phys. Usp. 15, 282 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    R. C. Fletcher, Phys. Rev. 76, 1501 (1949).ADSCrossRefGoogle Scholar
  5. 5.
    P. Felsenthal and J. M. Proud, Phys. Rev. 139, A1796 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    G. A. Mesyats, Yu. I. Bychkov, and A. M. Iskol’dskii, Sov. Phys. Tech. Phys. 13, 1051 (1968).Google Scholar
  7. 7.
    V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev, Plasma Phys. Rep. 41, 832 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. D. Korolev and N. M. Bykov, IEEE Trans. Plasma Sci. 40, 2443 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. D. Korolev, N. M. Bykov, and S. N. Ivanov, Plasma Phys. Rep. 34, 1022 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    S. N. Ivanov, E. A. Litvinov, and V. G. Shpak, Tech. Phys. Lett. 32, 745 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    S. N. Ivanov and K. A. Sharypov, Tech. Phys. Lett. 42, 274 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    S. N. Ivanov and K. A. Sharypov, Izv. Vyssh. Uchebn. Zaved., Fizika 57 (12/2), 186 (2014).Google Scholar
  13. 13.
    S. N. Ivanov and K. A. Sharypov, Izv. Vyssh. Uchebn. Zaved., Fizika 58 (12/2), 137 (2015).Google Scholar
  14. 14.
    S. N. Ivanov and K. A. Sharypov, Tech. Phys. 60, 1478 (2015).CrossRefGoogle Scholar
  15. 15.
    M. I. Yalandin and V. G. Shpak, Instrum. Exp. Tech. 44, 285 (2001).CrossRefGoogle Scholar
  16. 16.
    A. N. Dyad’kov, S. N. Ivanov, and M. R. Ul’maskulov, Instrum. Exp. Tech. 41, 358 (1998).Google Scholar
  17. 17.
    H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).Google Scholar
  18. 18.
    A. M. Efremov, B. M. Koval’chuk, and Yu. D. Korolev, Tech. Phys. 57, 478 (2012).CrossRefGoogle Scholar
  19. 19.
    V. L. Granovskii, Electrical Current in Gas: Steady-State Current (Nauka, Moscow, 1971) [in Russian].Google Scholar
  20. 20.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).Google Scholar
  21. 21.
    Yu. D. Korolev and G. A. Mesyats, Field-Emission and Explosive Processes in Gas Discharges (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  22. 22.
    S. N. Ivanov, J. Phys. D 46, 285201 (2013).CrossRefGoogle Scholar
  23. 23.
    S. N. Ivanov and V. V. Lisenkov, Tech. Phys. 55, 53 (2010).CrossRefGoogle Scholar
  24. 24.
    S. N. Ivanov, V. V. Lisenkov, and V. G. Shpak, Tech. Phys. 53, 1162 (2008).CrossRefGoogle Scholar
  25. 25.
    S. N. Ivanov, V. V. Lisenkov, and V. G. Shpak, J. Phys. D 43, 315204 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    S. N. Ivanov, Phys. Doklady 49, 701 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    V. V. Lisenkov and V. A. Shklyaev, Tech. Phys. 59, 1780 (2014).CrossRefGoogle Scholar
  28. 28.
    V. V. Lisenkov and V. A. Shklyaev, Phys. Plasmas 22, 113507 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations