Plasma Physics Reports

, Volume 44, Issue 3, pp 334–344 | Cite as

Influence of a Nitrogen Admixture on the Anomalous Memory Effect in the Breakdown of Low-Pressure Argon in a Long Discharge Tube

  • N. A. Dyatko
  • Yu. Z. Ionikh
  • A. V. Meshchanov
  • A. P. Napartovich
Low-Temperature Plasma

Abstract

The memory effect (the dependence of the dynamic breakdown voltage U b on the time interval τ between voltage pulses) in pulse-periodic discharges in pure argon and the Ar + 1%N2 mixture was studied experimentally. The discharge was ignited in a 2.8-cm-diameter tube with an interelectrode distance of 75 cm. The measurements were performed at gas pressures of P = 1, 2, and 5 Torr and discharge currents in a steady stage of the discharge of I = 20 and 56 mA. Breakdown was produced by applying positive-polarity voltage pulses, the time interval between pulses being in the range of τ = 0.5–40 ms. In this range of τ values, a local maximum (the anomalous memory effect) was observed in the dependence U b (τ). It is shown that addition of nitrogen to argon substantially narrows the range of τ values at which this effect takes place. To analyze the measurement results, the plasma parameters in a steady-state discharge (in both pure argon and the Ar + 1%N2 mixture) and its afterglow were calculated for the given experimental conditions. Analysis of the experimental data shows that the influence of the nitrogen admixture on the shape of the dependence U b (τ) is, to a large extent, caused by the change in the decay rate of the argon afterglow plasma in the presence of a nitrogen admixture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ricardt, A. Besner, J. Hubert, and M. Moisant, J. Phys. B 21, L579 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    T. Kimura, K. Akatsuka, and K. Ohe, J. Phys. D 27, 1664 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    P. A. Sa and J. Loureiro, J. Phys. D 30, 2320 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    J. Henriques, E. Tatarova, F. M. Dias, and C. M. Ferreira, J. Appl. Phys. 103, 103304 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    A. Bogaerts, Spectrochim. Acta B 64, 126 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, A. P. Napartovich, and K. A. Barzilovich, Plasma Phys. Rep. 36, 1040 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Z. Ionikh, N. A. Dyatko, A. V. Meshchanov, A. P. Napartovich, and F. B. Petrov, Plasma Sources Sci. Technol. 21, 055008 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. Hübner, E. Carbone, J. M. Palomares, and J. van der Mullen, Plasma Process. Polym. 11, 482 (2014).CrossRefGoogle Scholar
  9. 9.
    M. M. Pejović, G. S. Ristić, and J. P. Karamarković, J. Phys. D 35, R91 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    N. T. Nesić, G. S. Ristić, J. P. Karamarković, and M. M. Pejović, J. Phys. D 41, 225205 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    V. Lj. Marković, S. R. Gocić, and S. N. Stamenković, J. Phys. D 42, 015207 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    M. M. Pejović, E. N. Živanović, M. M. Pejović, and J. P. Karamarković, Plasma Sources Sci. Technol. 19, 045021 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).Google Scholar
  14. 14.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].Google Scholar
  15. 15.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).CrossRefGoogle Scholar
  16. 16.
    W. Bartholomeyczeyk, Ann. Phys. (Leipzig) 36, 485 (1939).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Nedospasov and A. E. Novik, Sov. Phys. Tech. Phys. 5, 1261 (1961).Google Scholar
  18. 18.
    R. E. Horstman and F. M. O. Lansink, J. Phys. D 21, 1130 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    W. J. M. Brok, J. van Dijk, M. D. Bowden, J. J. A. M. van der Mullen, and G. M. W. Kroesen, J. Phys. D 36, 1967 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    M. F. Gendre, M. D. Bowden, H. Haverlag, H. C. M. van den Nieuwenhuizen, J. Gielen, and G. M. W. Kroesen, in Proceedings of Frontiers in Low Temperature Plasma Diagnostics V, Specchia, 2003, Ed. by S. De Benedictis and G. Dilecce, p. 295.Google Scholar
  21. 21.
    M. F. Gendre, M. D. Bowden, H. C. M. van den Nieuwenhuizen, M. Haverlag, J. W. A. M. Gielen, and G. M. W. Kroesen, IEEE Trans. Plasma Sci. 33, 262 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    W. J. M. Brok, M. F. Gendre, and J. J. A. M. van der Mullen, J. Phys. D 40, 156 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    W. J. M. Brok, M. F. Gendre, M. Haverlag, and J. J. A. M. van der Mullen, J. Phys. D 40, 3931 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    R. Langer, R. Garner, A. Hilscher, R. Tidecks, and S. Horn, J. Phys. D 41, 144011 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    M. F. Gendre, M. Haverlag, and G. M. W. Kroesen, J. Phys. D 43, 234004 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    A. I. Shishpanov, Yu. Z. Ionikh, A. V. Meshchanov, and N. A. Dyatko, Plasma Phys. Rep. 40, 467 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Meshchanov, A. N. Korshunov, Yu. Z. Ionikh, and N. A. Dyatko, Plasma Phys. Rep. 41, 677 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Meshchanov, Yu. Z. Ionikh, A. I. Shishpanov, and S. A. Kalinin, Plasma Phys. Rep. 42, 978 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    S. Hübner, J. M. Palomares Linares, E. A. D. Carbone, and J. J. A. M. van der Mullen, J. Phys. D 45, 055203 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    N. A. Dyatko and A. P. Napartovich, in Proceedings of the 23rd Europhysics Conference on Atomic and Molecular Physics of Ionized Gases, Bratislava, 2016, Report P01-06-07.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Dyatko
    • 1
  • Yu. Z. Ionikh
    • 2
  • A. V. Meshchanov
    • 2
  • A. P. Napartovich
    • 1
  1. 1.Troitsk Institute for Innovation and Fusion ResearchTroitsk, MoscowRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations