Plasma Physics Reports

, Volume 43, Issue 6, pp 659–667 | Cite as

Brownian motion of a plasma crystal

Dusty Plasma
  • 34 Downloads

Abstract

The dynamics of a plasma crystal under the action of random external forces is considered. The pair correlation functions of the particle displacements are calculated in the harmonic approximation by using the Langevin equations. The case of a planar hexagonal lattice is analyzed in more detail. Analogues of the Van Hove singularities in the spectral densities are discovered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).Google Scholar
  2. 2.
    V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Springer, Berlin, 2008).CrossRefMATHGoogle Scholar
  3. 3.
    S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).CrossRefMATHGoogle Scholar
  4. 4.
    V. Nosenko, S. K. Zhdanov, S.-H. Kim, J. Heinrich, R. L. Merlino, and G. E. Morfil, Europhys. Lett. 88, 65001 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Ivanov and A. Meltzer, Phys. Plasmas 12, 072110 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    O. S. Vaulina, JETP 122, 193 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    M. Sato, H. Katsuno, and Y. Suzuki, Phys. Rev. E 87, 032403 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. L. Klimontovich, Statistical Physics (Nauka, Moscow, 1982; Harwood, Chur, 1986).Google Scholar
  9. 9.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, London, 1972).CrossRefMATHGoogle Scholar
  10. 10.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Nauka, Moscow, 1986; Pergamon Press, Oxford, 1986).MATHGoogle Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations