Plasma Physics Reports

, Volume 43, Issue 6, pp 605–613 | Cite as

Recovery of the characteristics of plasma turbulence from the radial correlation backscattering diagnostics

Plasma Diagnostics
  • 30 Downloads

Abstract

Signals of the backscattering radial correlation Doppler diagnostics of plasma density fluctuations in the presence of the cutoff of the probing wave are analyzed theoretically with allowance for the curvature of magnetic surfaces. The scattering of the probing electromagnetic wave is considered in the linear (Born) approximation with respect to the amplitude of fluctuations. Using the Wentzel−Kramers−Brillouin approach, analytical expressions for the scattered signal and the correlation function of two scattered signals corresponding to oblique probing at different frequencies are derived. A criterion is obtained for the tilt angle of the antenna pattern at which the two-point turbulence correlation function can be measured directly. A method is proposed to recover the spectrum of plasma density fluctuations from the data on the radial wavenumbers even if this criterion is violated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Costley, P. Cripwell, R. Prentice, and A. C. Sips, Rev. Sci. Instrum. 61, 2823 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    E. Mazzucato and R. Nazikian, Phys. Rev. Lett. 71, 1840 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Vershkov, S. V. Soldatov, D. A. Shelukhin, and V. V. Chistiakov, Nucl. Fusion 39, 1775 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    K. M. Novik and A. D. Piliya, Plasma Phys. Controlled Fusion 36, 357 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    E. Z. Gusakov, N. M. Kaganskaya, M. Kramer, and V. L. Selenin, Plasma Phys. Controlled Fusion 42, 1033 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    I. Hutchinson, Plasma Phys. Controlled Fusion 34, 1225 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    E. Z. Gusakov and B. O. Yakovlev, Plasma Phys. Controlled Fusion 44, 2525 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    G. Leclert, S. Heuraux, E. Z. Gusakov, A. Yu. Popov, I. Boucher, and L. Vermare, Plasma Phys. Controlled Fusion 48, 1389 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    E. Blanco and T. Estrada, Plasma Phys. Controlled Fusion 55, 125006 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    E. Z. Gusakov and N. V. Kosolapova, Plasma Phys. Controlled Fusion 53, 045012 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    E. Gusakov, M. Irzak, and A. Popov, Plasma Phys. Controlled Fusion 56, 025009 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    E. Z. Gusakov and M. A. Tyintarev, Fusion Eng. Des. 34-35, 501 (1997).CrossRefGoogle Scholar
  13. 13.
    E. Z. Gusakov and A. V. Surkov, Plasma Phys. Controlled Fusion 46, 1143 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Kosolapova, E. Z. Gusakov, and S. Heuraux, Plasma Phys. Controlled Fusion 54, 035008 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    A. Altukhov, L. Esipov, A. Gurchenko, E. Gusakov, M. Irzak, M. Kantor, D. Kouprienko, S. Lashkul, S. Leerink, and N. Teplova, in Proceedings of the 40th EPS Conference on Plasma Physics, Espoo, 2013, ECA 37D, P1.170 (2013).Google Scholar
  16. 16.
    J. Schirmer, G. D. Conway, E. Holzhauer, W. Suttrop, and H. Zohm, Plasma Phys. Controlled Fusion 49, 1019 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    F. Fernandez, T. Estrada, and E. Blanco, Nucl. Fusion 54, 072001 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    A. D. Piliya and A. Yu. Popov, Plasma Phys. Controlled Fusion 44, 467 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations