Plasma Physics Reports

, Volume 43, Issue 6, pp 696–710 | Cite as

Experimental studies of the magnetic structure and plasma dynamics in current sheets (a review)

Applied Physics
  • 32 Downloads

Abstract

Based on measurements of magnetic fields in current sheets, spatial distributions of the electric current and electrodynamic forces in successive stages of the sheet evolution are determined. Two new effects manifesting themselves mostly in the late stages of the current sheet evolution have been discovered, namely, expansion of the current flow region at the periphery of the sheet and the appearance of a region with inverse currents, which gradually expands from the periphery toward the center of the sheet. Using spectroscopic methods, generation of superthermal plasma flows accelerated along the sheet width from the center toward the periphery has been revealed and investigated. The measured energies of accelerated plasma ions satisfactorily agree with the Ampère forces determined from magnetic measurements. The excitation of inverse currents additionally confirms the motion of high-speed plasma flows from the center of the current sheet toward its side edges.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Syrovatskii, Annu. Rev. Astron. Astrophys. 19, 163 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    D. Biscamp, Magnetic Reconnection in Plasmas (Cambridge Univ. Press, Cambridge, 2000).CrossRefGoogle Scholar
  3. 3.
    P. A. Sweet, in Electromagnetic Phenomena in Cosmical Physics, Ed. by B. Lehnert (Cambridge Univ. Press, Cambridge, 1958), p. 123.Google Scholar
  4. 4.
    E. N. Parker, Astrophys. J. Suppl. 8, 177 (1963).ADSCrossRefGoogle Scholar
  5. 5.
    E. R. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, New York, 2000).CrossRefMATHGoogle Scholar
  6. 6.
    B. B. Kadomtsev, Rep. Prog. Phys. 50, 115 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    L. M. Zelenyi, A. V. Artemyev, Kh. V. Malova, A. A. Petrukovich, and R. Nakamura, Phys. Usp. 53, 933 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    A. Bratenahl and M. Yeates, Phys. Fluids 11, 2696 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    N. Ohyabu and N. Kawashima, J. Phys. Soc. Jpn. 33, 496 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    S. I. Syrovatskii, A. G. Frank, and A. Z. Khodzhaev, JETP Lett. 15, 94 (1972).ADSGoogle Scholar
  11. 11.
    A. T. Altyntsev and V. I. Krasov, Sov. Phys. Tech. Phys. 19, 1639 (1974).ADSGoogle Scholar
  12. 12.
    R. L. Stenzel and W. Gekelman, J. Geophys. Res. 86, 649 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Ono, A. Morita, M. Katsurai, and M. Yamada, Phys. Fluids B 5, 3691 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    M. Yamada, H. Ji, S. Hsu, T. Carter, R. M. Kulsrud, N. Bretz, F. Jobes, Y. Ono, and F. W. Perkins, Phys. Plasmas 4, 1937 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    M. Yamada, R. Kurlsrud, and H. Ji, Rev. Mod. Phys. 82, 603 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    A. G. Frank, Plasma Phys. Controlled Fusion 41 (Suppl. 3A), A687 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    M. R. Brown, Phys. Plasmas 6, 1717 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    P. M. Bellan, S. You, and S. C. Hsu, Astrophys. Space Sci. 298, 203 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    J. Egedal, M. Oiroset, W. Fox, and R. P. Lin, Phys. Rev. Lett. 94, 025006 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    T. P. Intrator, I. Furno, D. D. Ryutov, G. Lapenta, L. Dorf, and X. Sun, J. Geophys. Res. 112, A05S90 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    A. G. Frank, in Plasma Heliogeophysics, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008), Vol. 2, p. 259 [in Russian].Google Scholar
  22. 22.
    A. G. Frank, Phys. Usp. 53, 941 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    T. Forbes, J. Geophys. Res. 105, 23153 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    V. D. Kuznetsov, in Plasma Heliogeophysics, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008), Vol. 1, p. 81 [in Russian].Google Scholar
  25. 25.
    K. Shibata, S. Masuda, M. Shimojo, H. Hara, T. Yokoyama, S. Tsuneta, T. Kosugi, and Y. Ogawara, Astrophys. J. Lett. 451, L83 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    B. P. Filippov, Eruptive Processes on the Sun (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  27. 27.
    A. G. Frank, EAS Publ. Series, 58, 57 (2012).CrossRefGoogle Scholar
  28. 28.
    A. G. Frank, V. P. Gavrilenko, N. P. Kyrie, and G. V. Ostrovskaya, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. III-2: Thermodynamic, Optical, and Transport Properties of Low-Temperature Plasma, Part 1: Optical Properties of Low-Temperature Plasma, Ed. by V. N. Ochkin (Yanus-K, Moscow, 2008), p. 335 [in Russian].Google Scholar
  29. 29.
    G. S. Voronov, N. P. Kyrie, V. S. Markov, G. V. Ostrovskaya, and A. G. Frank, Plasma Phys. Rep. 34, 999 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    N. P. Kyrie, V. P. Gavrilenko, and A. G. Frank, Vest. Pomorsk. Univ., Ser. Estestv. Nauki, No. 4, 59 (2009).Google Scholar
  31. 31.
    N. P. Kyrie, V. S. Markov, and A. G. Frank, Plasma Phys. Rep. 36, 357 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    N. P. Kyrie, V. S. Markov, and A. G. Frank, JETP Lett. 95, 14 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    N. P. Kyrie and A. G. Frank, Plasma Phys. Rep. 38, 960 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Plasmas 15, 092102 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Lett. A 373, 1460 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    G. V. Ostrovskaya, A. G. Frank, and S. Yu. Bogdanov, Tech. Phys. 55, 936 (2010).CrossRefGoogle Scholar
  37. 37.
    A. G. Frank and S. N. Satunin, Plasma Phys. Rep. 37, 829 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    A. G. Frank, N. P. Kyrie, and S. N. Satunin, Phys. Plasmas 18, 111209 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    G. V. Ostrovskaya and A. G. Frank, Plasma Phys. Rep. 40, 21 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    A. G. Frank and S. N. Satunin, JETP Lett. 100, 75 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    G. V. Ostrovskaya, V. S. Markov, and A. G. Frank, Plasma Phys. Rep. 42, 1 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    M. E. Koepke, Rev. Geophys. 46, 1 (2008).CrossRefGoogle Scholar
  43. 43.
    E. G. Zweibel and M. Yamada, Annu. Rev. Astron. Astrophys. 47, 291 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    A. V. Artemyev, A. A. Petrukovich, A. G. Frank, I. Y. Vasko, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res. 118, 2789 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Yu. Bogdanov, N. P. Kyrie, V. S. Markov, and A. G. Frank, JETP Lett. 71, 53 (2000).ADSCrossRefGoogle Scholar
  46. 46.
    A. G. Frank, S. Yu. Bogdanov, V. S. Markov, G. V. Ostrovskaya, and G. V. Dreiden, Phys. Plasmas 12, 052316 (2005).ADSCrossRefGoogle Scholar
  47. 47.
    S. Yu. Bogdanov, S. G. Bugrov, V. P. Gritsyna, O. V. Zverev, G. V. Karpov, V. S. Markov, D. V. Repin, and A. G. Frank, Plasma Phys. Rep. 33, 435 (2007).ADSCrossRefGoogle Scholar
  48. 48.
    www.nanoscan.ruGoogle Scholar
  49. 49.
    S. I. Syrovatskii, Sov. Phys. JETP 33, 933 (1971).ADSGoogle Scholar
  50. 50.
    B. V. Somov, Plasma Astrophysics, Parts I, II (Springer, New York, 2012, 2013).CrossRefMATHGoogle Scholar
  51. 51.
    S. Yu. Bogdanov, V. S. Markov, A. G. Frank, G. V. Dreiden, I. I. Komissarova, G. V. Ostrovskaya, and E. N. Shedova, Plasma Phys. Rep. 27, 549 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, G. V. Ostrovskaya, and A. G. Frank, Plasma Phys. Rep. 32, 1034 (2006).ADSCrossRefGoogle Scholar
  53. 53.
    S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, G. V. Ostrovskaya, and A. G. Frank, Plasma Phys. Rep. 33, 930 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations