Skip to main content
Log in

Nonlinear dynamics of beam–plasma instability in a finite magnetic field

  • Beams in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The nonlinear dynamics of beam–plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam−plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ~ ωB p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Akhiezer and Ya. B. Fainberg, Dokl. Akad. Nauk SSSR 69, 55 (1949).

    Google Scholar 

  2. D. Bohm and E. Gross, Phys. Rev. 75, 1872 (1949).

    ADS  Google Scholar 

  3. I. F. Kharchenko, Ya. B. Fainberg, R. N. Nikolaev, E. A. Kornilov, E. I. Lutsenko, and N. S. Pedenko, Sov. Phys. JETP 11, 493 (1960).

    Google Scholar 

  4. R. A. Demirkhanov, A. K. Gevorkov, A. F. Popov, and G. I. Zverev, Sov. Phys. Tech. Phys. 5, 282 (1960).

    Google Scholar 

  5. M. S. Rabinovich and A. A. Rukhadze, Sov. J. Plasma Phys. 2, 397 (1976).

    ADS  Google Scholar 

  6. M. V. Kuzelev, F. Kh. Mukhametzyanov, M. S. Rabinovich, A. A. Rukhadze, P. S. Strelkov, and A. G. Shvarkunets, Sov. Phys. JETP 56, 780 (1982).

    Google Scholar 

  7. I. L. Bogdankevich, D. M. Grishin, A. V. Gunin, I. E. Ivanov, S. T. Korovin, O. T. Loza, G. A. Mesyats, D. A. Pavlov, V. V. Rostov, P. S. Strelkov, and D. K. Ul’yanov, Plasma Phys. Rep. 34, 855 (2008).

    Article  ADS  Google Scholar 

  8. I. L. Bogdankevich, I. E. Ivanov, O. T. Loza, P. S. Strelkov, D. K. Ul’yanov, and E. Garate, Tech. Phys. Lett. 33, 480 (2007).

    Article  ADS  Google Scholar 

  9. I. L. Bogdankevich, I. E. Ivanov, and P. S. Strelkov, Plasma Phys. Rep. 36, 762 (2010).

    Article  ADS  Google Scholar 

  10. V. V. Zheleznyakov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 2 (1), 14 (1959).

    Google Scholar 

  11. V. L. Ginzburg, Theoretical Physics and Astrophysics (Nauka, Moscow, 1975; Pergamon, Oxford, 1979).

    Google Scholar 

  12. M. V. Kuzelev and A. A. Rukhadze, Plasma Phys. Rep. 31, 638 (2005).

    Article  ADS  Google Scholar 

  13. A. F. Aleksandrov, M. V. Kuzelev, and O. E. Pyrkina, Sov. Phys. Tech. Phys. 30, 1427 (1985).

    ADS  Google Scholar 

  14. A. V. Ponomarev and P. S. Strelkov, Plasma Phys. Rep. 30, 62 (2004).

    Article  ADS  Google Scholar 

  15. P. S. Strelkov, A. V. Ponomarev, and I. L. Bogdankevich, Plasma Phys. Rep. 33, 329 (2007).

    Article  ADS  Google Scholar 

  16. M. V. Kuzelev and A. A. Rukhadze, Basics of Plasma Free Electron Lasers (Nauka, Moscow, 1990; Frontieres, Paris, 1995).

    Google Scholar 

  17. A. M. Ignatov, Plasma Phys. Rep. 38, 627 (2012).

    Article  ADS  Google Scholar 

  18. V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, VA, 1992).

    Google Scholar 

  19. J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. I. Fedosov, E. A. Litvinov, S. Ya. Belomyttsev, and S. P. Bugaev, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 10, 134 (1977).

    Google Scholar 

  21. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics (Mosk. Gos. Tekhn. Univ. im. N.E. Baumana, Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  22. I. L. Bogdankevich, P. S. Strelkov, and V. P. Tarakanov, Bull. Lebedev Phys. Inst. 34, 289 (2007).

    Article  ADS  Google Scholar 

  23. N. N. Skvortsova, O. V. Shestakov, and D. V. Malakhov, Methods of Numerical Analysis of Stochastic Sygnals (Izd. MIREA, Moscow, 2011) [in Russian].

    Google Scholar 

  24. A. K. Gorshenin, V. Yu. Korolev, D. V. Malakhov, and N. N. Skvortsova, Computer Software Registration Certificate nos. 2012610645, 2012610646, 2012610923, and 2011618892 (2012).

  25. I. N. Kartashov, M. A. Krasil’nikov, and M. V. Kuzelev, J. Comm. Technol. Electron. 44, 1385 (1999).

    Google Scholar 

  26. A. M. Ignatov and I. A. Kelekhsaeva, Kratk. Soobshch. Fiz., No. 10, 33 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Gusein-zade.

Additional information

Original Russian Text © I.L. Bogdankevich, P.Yu. Goncharov, N.G. Gusein-zade, A.M. Ignatov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 6, pp. 548–559.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdankevich, I.L., Goncharov, P.Y., Gusein-zade, N.G. et al. Nonlinear dynamics of beam–plasma instability in a finite magnetic field. Plasma Phys. Rep. 43, 648–658 (2017). https://doi.org/10.1134/S1063780X17060046

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17060046

Navigation