Plasma Physics Reports

, Volume 43, Issue 6, pp 648–658 | Cite as

Nonlinear dynamics of beam–plasma instability in a finite magnetic field

  • I. L. Bogdankevich
  • P. Yu. Goncharov
  • N. G. Gusein-zade
  • A. M. Ignatov
Beams in Plasma


The nonlinear dynamics of beam–plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam−plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ~ ωB p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Akhiezer and Ya. B. Fainberg, Dokl. Akad. Nauk SSSR 69, 55 (1949).Google Scholar
  2. 2.
    D. Bohm and E. Gross, Phys. Rev. 75, 1872 (1949).ADSGoogle Scholar
  3. 3.
    I. F. Kharchenko, Ya. B. Fainberg, R. N. Nikolaev, E. A. Kornilov, E. I. Lutsenko, and N. S. Pedenko, Sov. Phys. JETP 11, 493 (1960).Google Scholar
  4. 4.
    R. A. Demirkhanov, A. K. Gevorkov, A. F. Popov, and G. I. Zverev, Sov. Phys. Tech. Phys. 5, 282 (1960).Google Scholar
  5. 5.
    M. S. Rabinovich and A. A. Rukhadze, Sov. J. Plasma Phys. 2, 397 (1976).ADSGoogle Scholar
  6. 6.
    M. V. Kuzelev, F. Kh. Mukhametzyanov, M. S. Rabinovich, A. A. Rukhadze, P. S. Strelkov, and A. G. Shvarkunets, Sov. Phys. JETP 56, 780 (1982).Google Scholar
  7. 7.
    I. L. Bogdankevich, D. M. Grishin, A. V. Gunin, I. E. Ivanov, S. T. Korovin, O. T. Loza, G. A. Mesyats, D. A. Pavlov, V. V. Rostov, P. S. Strelkov, and D. K. Ul’yanov, Plasma Phys. Rep. 34, 855 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    I. L. Bogdankevich, I. E. Ivanov, O. T. Loza, P. S. Strelkov, D. K. Ul’yanov, and E. Garate, Tech. Phys. Lett. 33, 480 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    I. L. Bogdankevich, I. E. Ivanov, and P. S. Strelkov, Plasma Phys. Rep. 36, 762 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Zheleznyakov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 2 (1), 14 (1959).Google Scholar
  11. 11.
    V. L. Ginzburg, Theoretical Physics and Astrophysics (Nauka, Moscow, 1975; Pergamon, Oxford, 1979).Google Scholar
  12. 12.
    M. V. Kuzelev and A. A. Rukhadze, Plasma Phys. Rep. 31, 638 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    A. F. Aleksandrov, M. V. Kuzelev, and O. E. Pyrkina, Sov. Phys. Tech. Phys. 30, 1427 (1985).ADSGoogle Scholar
  14. 14.
    A. V. Ponomarev and P. S. Strelkov, Plasma Phys. Rep. 30, 62 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    P. S. Strelkov, A. V. Ponomarev, and I. L. Bogdankevich, Plasma Phys. Rep. 33, 329 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    M. V. Kuzelev and A. A. Rukhadze, Basics of Plasma Free Electron Lasers (Nauka, Moscow, 1990; Frontieres, Paris, 1995).Google Scholar
  17. 17.
    A. M. Ignatov, Plasma Phys. Rep. 38, 627 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, VA, 1992).Google Scholar
  19. 19.
    J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. I. Fedosov, E. A. Litvinov, S. Ya. Belomyttsev, and S. P. Bugaev, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 10, 134 (1977).Google Scholar
  21. 21.
    M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics (Mosk. Gos. Tekhn. Univ. im. N.E. Baumana, Moscow, 2002) [in Russian].MATHGoogle Scholar
  22. 22.
    I. L. Bogdankevich, P. S. Strelkov, and V. P. Tarakanov, Bull. Lebedev Phys. Inst. 34, 289 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    N. N. Skvortsova, O. V. Shestakov, and D. V. Malakhov, Methods of Numerical Analysis of Stochastic Sygnals (Izd. MIREA, Moscow, 2011) [in Russian].Google Scholar
  24. 24.
    A. K. Gorshenin, V. Yu. Korolev, D. V. Malakhov, and N. N. Skvortsova, Computer Software Registration Certificate nos. 2012610645, 2012610646, 2012610923, and 2011618892 (2012).Google Scholar
  25. 25.
    I. N. Kartashov, M. A. Krasil’nikov, and M. V. Kuzelev, J. Comm. Technol. Electron. 44, 1385 (1999).Google Scholar
  26. 26.
    A. M. Ignatov and I. A. Kelekhsaeva, Kratk. Soobshch. Fiz., No. 10, 33 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. L. Bogdankevich
    • 1
    • 2
  • P. Yu. Goncharov
    • 3
  • N. G. Gusein-zade
    • 1
    • 2
  • A. M. Ignatov
    • 1
    • 2
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia
  3. 3.Moscow Technological University (MIREA)MoscowRussia

Personalised recommendations