Advertisement

Plasma Physics Reports

, Volume 43, Issue 6, pp 677–684 | Cite as

Raman amplification of laser pulses near the threshold for plasma wave breaking

  • A. A. Balakin
  • D. S. Levin
Nonlinear Phenomena
  • 32 Downloads

Abstract

Equations are derived for the amplitudes of counter-propagating laser pulses near the threshold for plasma wave breaking, which allow one to describe laser pulses with durations on the order of the plasma oscillation period. In the quasi-monochromatic approximation, they take the form of conventional threewave equations with an additional nonlinearity for the plasma wave. The amplitudes of the amplified laser pulses estimated using these equations agree with results obtained by solving the complete equations. It is shown that Raman amplification of a weak quasi-monochromatic signal (plasma noise) in rarified plasma is significantly suppressed. At the same time, according to numerical simulations, the amplification of laser pulses with durations on the order of the plasma oscillation period is suppressed insignificantly. This result opens new prospects in the application of Raman compression of laser pulses without additional frequency modulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Plasmas 7, 2232 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Ping, W. Cheng, S. Suckewer, D. S. Clark, and N. J. Fisch, Phys. Rev. Lett. 92, 175007 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. J. Fisch, M. S. Hur, and J. S. Wurtele, Phys. Rev. Lett. 94, 045003 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    J. Ren, S. Li, A. Morozov, S. Suckewer, N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 15, 056702 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    C. H. Pai, M. W. Lin, L. C. Ha, S. T. Huang, Y.C.Tsou, H. H. Chu, J. Y. Lin, J. Wang, and S. Y. Chen, Phys. Rev. Lett. 101, 065005 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Balakin, D. V. Kartashov, A. M. Kiselev, S. A. Skobelev, A. N. Stepanov, and G. M. Fraiman, JETP Lett. 80, 12 (2004).Google Scholar
  9. 9.
    G. M. Fraiman, N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 9, 3617 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    V. M. Malkin and N. J. Fisch, Eur. Phys. J. Special Topics 223, 1157 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    V. M. Malkin, Z. Toroker, and N. J. Fisch, Phys. Plasmas 21, 093112 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    V. M. Malkin, Z. Toroker, and N. J. Fisch, Phys. Rev. E 90, 063110 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    I. Barth, Z. Toroker, A. A. Balakin, and N. J. Fisch, Phys. Rev. E 93, 063210 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Balakin, G. M. Fraiman, N. J. Fisch, and S. Suckewer, Phys. Rev. E 72, 036401 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    Y. A. Tsidulko, V. M. Malkin, and N. J. Fisch, Phys. Rev. Lett. 88, 235004 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Solodov, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 10, 2540 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Balakin, I. Y. Dodin, G. M. Fraiman, and N. J. Fisch, Phys. Plasmas 23, 083115 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    V. M. Malkin, N. J. Fisch, and J. S. Wurtele, Phys. Rev. E 75, 026404 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Balakin, N. J. Fisch, G. M. Fraiman, V. M. Malkin, and Z. Toroker, Phys. Plasmas 18, 102311 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    M. S. Hur, R. R. Lindberg, A. E. Charman, J. S. Wurtele, and H. Suk, Phys. Rev. Lett. 95, 115003 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    S. Depierreux, V. Yahia, C. Goyon, G. Loisel, P.-E. Masson-Laborde, N. Borisenko, A. Orekhov, O. Rosmej, T. Rienecker, and C. Labaune, Nature Commun. 5, 4158 (2014).CrossRefGoogle Scholar
  22. 22.
    R. M. G. M. Trines, F. Fiuza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, Nature Phys. 7, 87 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, Phys. Rev. E 69, 036401 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    Z. Toroker, V. M. Malkin, A. A. Balakin, G. M. Fraiman, and N. J. Fisch, Phys. Plasmas 19, 083110 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    Z. Toroker, V. M. Malkin, and N. J. Fisch, Phys. Rev. Lett. 109, 085003 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    D. S. Clark and N. J. Fisch, Phys. Plasmas 10, 3363 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    Z. Toroker, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 21, 113110 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations