Advertisement

Plasma Physics Reports

, Volume 43, Issue 6, pp 668–676 | Cite as

Small-amplitude shock waves and double layers in dusty plasmas with opposite polarity charged dust grains

  • M. Amina
  • S. A. Ema
  • A. A. Mamun
Dusty Plasma

Abstract

Theoretical investigation is carried out for understanding the properties of nonlinear dust-acoustic (DA) waves in an unmagnetized dusty plasma whose constituents are massive, micron-sized, positive and negatively charged inertial dust grains along with q (nonextensive) distributed electrons and ions. The reductive perturbation method is employed in order to derive two types of nonlinear dynamical equations, namely, Burgers equation and modified Gardner equation (Gardner equation with dissipative term). They are also numerically analyzed to investigate the basic features (viz., polarity, amplitude, width, etc.) of shock waves and double layers. It has been observed that the effects of nonextensivity, opposite polarity charged dust grains, and different dusty plasma parameters have significantly modified the fundamental properties of shock waves and double layers. The results of this investigation may be used for researches of the nonlinear wave propagation in laboratory and space plasmas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Mamun and P. K. Shukla, Geophys. Res. Lett. 29, 1870 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    P. K. Shukla, G. T. Birk, and G. E. Morfill, Phys. Scr. 56, 299 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    C. K. Geortz, Rev. Geophys. 27, 271 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill, and D. K. Coultas, Phys. Rev. Lett. 68, 313 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    A. Barkan, N. D’Angelo, and R. L. Merlino, Phys. Rev. Lett. 73, 3093 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    N. Meyer-Vernet, Astron. Astrophys. 105, 98 (1982).ADSGoogle Scholar
  8. 8.
    M. Horanyi, G. E. Morfill, and E. Grun, Nature 363, 144 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).CrossRefGoogle Scholar
  10. 10.
    V. W. Chow, D. A. Mendis, and M. J. Rosenberg, J. Geophys. Res. Space Phys. 98, 19065 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    O. Havnes, J. Troim, T. Blix, W. Mortensen, L. I. Naesheim, E. Thrane, and T. Tonnesen, J. Geophys. Res. 101, 10839 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Mamun, Phys. Rev. E 77, 026406 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    B. Smiley, S. Robertson, M. Horanyi, T. Blix, M. Rapp, R. Latteck, and J. Gumbel, Geophys. Res. Lett. 108, 8444 (2003).CrossRefGoogle Scholar
  14. 14.
    B. A. Klumov, S. I. Popel, and R. Bingham, JETP Lett. 72, 364 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    N. N. Rao, P. K. Sukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    S. K. El-Labany and W. F. El-Taibany, Phys. Plasmas 10, 989 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    S. K. El-Labany and W. F. El-Taibany, Phys. Plasmas 10, 4685 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    F. Melandso, Phys. Plasmas 3, 3890 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    B. Sahu and M. Tribeche, Astrophys. Space Sci. 338, 259 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 702 (1996).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Emamuddin, S. Yasmin, and A. A. Mamun, Phys. Plasmas 20, 043705 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Mamun and P. K. Shukla, Phys. Lett. A 290, 173 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Mamun, Astrophys. Space Sci. 268, 443 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    A. A. Mamun, Phys. Lett. 372, 884 (2008).CrossRefGoogle Scholar
  27. 27.
    P. K. Shukla and A. A. Mamun, New J. Phys. 5, 17 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    A. M. Mirza, S. Mahmood, N. Jehan, and N. Ali, Phys. Scr. 75, 755 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    F. Sayed and A. A. Mamun, Phys. Plasmas 14, 014501 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    A. Rahman, A. A. Mamun, and S. M. Khurshed Alam, Astrophys. Space Sci. 315, 243 (2008).Google Scholar
  31. 31.
    A. A. Mamun and A. Mannan, JETP Lett. 94, 356 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Rev. E 84, 066402 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    E. Saberian and A. Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013).Google Scholar
  34. 34.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988).Google Scholar
  35. 35.
    S. A. Ema, M. Ferdousi, S. Sultana, and A. A. Mamun, Eur. Phys. J. Plus 130, 46 (2015).CrossRefGoogle Scholar
  36. 36.
    A. R. Plastino and A. Plastino, Phys. Lett. A 174, 384 (1993).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Gervino, A. Lavagno, and D. Pigato, Cent. Eur. J. Phys. 10, 594 (2012).Google Scholar
  38. 38.
    A. Lavagno and D. Pigato, Eur. Phys. J. A 47, 52 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    C. Féron and J. Hjorth, Phys. Rev. E 77, 022106 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    J. R. Asbridge, S. J. Bame, and I. B. Strong, J. Geophys. Res. 73, 5777 (1968).ADSCrossRefGoogle Scholar
  41. 41.
    S. M. Krimigis, J. F. Carbary, E. P. Keath, T. P. Armstrong, L. J. Lanzerotti, and G. Gloeckler, J. Geophys. Res. 88, 8871 (1983).Google Scholar
  42. 42.
    S. V. Vladimirov, and K. J. Ostrikov, Phys. Rep. 393, 175 (2004).ADSCrossRefGoogle Scholar
  43. 43.
    S. Yasmin, M. Asaduzzaman, and A. A. Mamun, J. Plasma Phys. 79, 545 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    A. S. Bains, M. Tribeche, and C. S. Ng, Astrophys. Space Sci. 343, 621628 (2013).Google Scholar
  45. 45.
    S. K. Zaghbeer, H. H. Salah, N. H. Sheta, E. K. El-Shewy, and A. Elgarayhi, J. Plasma Phys. 80, 517 (2014).ADSCrossRefGoogle Scholar
  46. 46.
    K. Roy, P. Chatterjee, S. S. Kausik, and C. S. Wong, Astrophys. Space Sci. 350, 599 (2014).ADSCrossRefGoogle Scholar
  47. 47.
    M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, Astrophys. Space Sci. 352, 579 (2014).ADSCrossRefGoogle Scholar
  48. 48.
    S. A. Ema, M. Ferdousi, and A. A. Mamun, Phys. Plasmas 22, 043702 (2015).ADSCrossRefGoogle Scholar
  49. 49.
    S. V. Singh and N. N. Rao, J. Plasma Phys. 60, 541(1998).ADSCrossRefGoogle Scholar
  50. 50.
    Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).ADSCrossRefGoogle Scholar
  51. 51.
    S. I. Popel, A. A. Gisko, A. P. Golub, T. V. Losseva, R. Bingham, and P. K. Shukla, Phys. Plasmas 7, 2410 (2000).ADSCrossRefGoogle Scholar
  52. 52.
    A. A. Mamun and P. K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).ADSCrossRefGoogle Scholar
  53. 53.
    A. A. Mamun and R. A. Cairns, Phys. Rev. E 79, 055401 (2009).ADSCrossRefGoogle Scholar
  54. 54.
    S. K. Kundu, D. K. Ghosh, P. Chatterjee, and B. Das, Bulg. J. Phys. 38, 409 (2011).Google Scholar
  55. 55.
    M. Shahmansouri and M. Tribeche, Astrophys. Space Sci. 346, 165 (2013).ADSCrossRefGoogle Scholar
  56. 56.
    S. A. Ema, M. R. Hossen, and A. A. Mamun, Contrib. Plasma Phys. 55, 596 (2015).ADSCrossRefGoogle Scholar
  57. 57.
    M. G. Shah, M. R. Hossen, and A. A. Mamun, Braz. J. Phys. 45, 219 (2015).ADSCrossRefGoogle Scholar
  58. 58.
    A. A. Mamun and M. S. Zobaer, Phys. Plasmas 21, 022101 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of PhysicsJahangirnagar UniversitySavar, DhakaBangladesh
  2. 2.Department of EEESonargaon UniversityDhakaBangladesh

Personalised recommendations