Plasma Physics Reports

, Volume 43, Issue 6, pp 614–620 | Cite as

Dynamics of the ion energy spectrum in EUV-induced hydrogen plasma

  • A. A. Abrikosov
  • O. F. Yakushev
  • D. V. Lopaev
  • V. M. Krivtsun
Plasma Diagnostics

Abstract

The dynamics of the ion energy spectrum in low-pressure (10–100 Pa) hydrogen plasma induced by extreme ultraviolet (EUV) pulses in the wavelength range of 10–20 nm was studied experimentally. The plasma was generated under cathode irradiation due to both direct gas ionization by EUV photons and impact ionization by high-energy secondary electrons. The dynamics of the spectra of ions incident on the cathode was measured using a time-resolved retarding field energy analyzer. It is shown that the ion spectrum dynamics is completely determined by the time evolution of the cathode sheath. At low gas pressures (<20 Pa), the ion spectrum at early moments after the EUV pulse has a peaked shape, typical of a collisionless plasma sheath, and is mainly determined by the cathode voltage. As the pressure increases, the peak broadens and low energy ions appear in the spectrum due to ion collisions in the cathode sheath. An increase in the role of collisions with decreasing plasma density is also observed in the time evolution of ion spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Silverman, J. Microlith. Microfab. Microsys. 4, 0111006 (2005).Google Scholar
  2. 2.
    E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, Prog. Surf. Sci. 86, 255 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    A. S. Kuznetsov, M. A. Gleeson, and F. Bijkerk, J. Phys. Condens. Matter 24, 052203 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    K. Boller, R. P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, Nucl. Instrum. Meth. Phys. Res. 208, 273 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, Appl. Surf. Sci. 253, 1691 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    A. Dolgov, D. Lopaev, T. Rachimova, A. Kovalev, A. Vasil’eva, V. M. Krivtsun, O. Yakushev, C. J. Lee, and F. Bijkerk, J. Phys. D 47, 065205 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    R. M. Horst, J. Beckers, E. A. Osorio, and V. Banine, J. Phys. D 48, 432001 (2015).CrossRefGoogle Scholar
  8. 8.
    R. M. Horst, J. Beckers, E. A. Osorio, and V. Banine, J. Phys. D 48, 285203 (2015).CrossRefGoogle Scholar
  9. 9.
    A. Dolgov, O. Yakushev, A. Abrikosov, E. Snegirev, V. M. Krivtsun, C. J. Lee, and F. Bijkerk, Plasma Sources Sci. Technol. 24, 35003 (2015).CrossRefGoogle Scholar
  10. 10.
    D. Gahan, B. Dolinaj, C. Hayden, and M. B. Hopkins, Plasma Process. Polym. 6, 643 (2009).CrossRefGoogle Scholar
  11. 11.
    V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, J. Phys. D 44, 253001 (2011).Google Scholar
  12. 12.
    M. S. Bibishkin, N. I. Chkhalo, S. A. Gusev, E. B. Kluenkov, A. Y. Lopatin, V. I. Luchin, A. E. Pestov, N. N. Salashchenko, L. A. Shmaenok, N. N. Tsybin, and S. Yu. Zuev, Proc. SPIE 7025, 702502 (2008).CrossRefGoogle Scholar
  13. 13.
    M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005).CrossRefGoogle Scholar
  14. 14.
    J. Glosik, Int. J. Mass Spectrom. Ion Process. 139, 15 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Phelps, J. Phys. Chem. Ref. Data 19, 653 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Abrikosov
    • 1
    • 2
  • O. F. Yakushev
    • 1
    • 3
  • D. V. Lopaev
    • 1
    • 2
  • V. M. Krivtsun
    • 1
    • 4
  1. 1.EUV-LabsLLCTroitsk, MoscowRussia
  2. 2.Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Institute for SpectroscopyRussian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations