Skip to main content
Log in

Fission-Fragment Mass Distribution and Heavy Nuclei Nucleosynthesis

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In this paper, the role of the mass distribution of fission fragments in the formation of heavy elements is considered. Two models of the mass distribution of fission fragments have been analyzed in detail: the Kodama–Takahashi model with a predominantly asymmetric distribution, and a model based on nuclear systematics with an almost symmetric distribution of fission remnants, which considers fission neutrons. It is shown that, in the merger scenario of a neutron star, the agreement between the second peak on the calculated abundance curve and observations can be obtained only if the distribution of fission remnants is symmetrical and fission neutrons are accounted for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. M. Burbridge et al., “Synthesis of the elements in stars,” Rev. Mod. Phys. 29, 547—650 (1957).

    Article  ADS  Google Scholar 

  2. C. Sneden et al., “Evidence of multiple r-process sites in the early Galaxy: New observations of CS 2289220521,” Astrophys. J. Lett. 533, L139–L142 (2000).

    Article  ADS  Google Scholar 

  3. F.-K. Thielemann et al., “Neutron star mergers and nucleosynthesis of heavy elements,” Annu. Rev. Nucl. Part. Sci. 67, 253–276 (2017).

    Article  ADS  Google Scholar 

  4. N. R. Tanvir et al., “The emergence of a lanthanide-rich kilonova following the merger of two neutron stars,” Astrophys. J. Lett. 848, L27–L35 (2017).

    Article  ADS  Google Scholar 

  5. D. Watson et al., “Identification of strontium in the merger of two neutron stars,” Nature 574, 497—506 (2019).

    Article  ADS  Google Scholar 

  6. I. V. Panov, F.-K. Thielemann, and C. Freiburghouse, “Could fission provide the formation of chemical elements with A < 120 in metal-poor stars?,” Nucl. Phys. A 688, 587—589 (2001).

    Article  ADS  Google Scholar 

  7. I. V. Panov and F.-K. Thielemann, “Final r-process yields and the influence of fission: The competition between neutron-induced and beta-delayed fission,” Nucl. Phys. A 718, 647—649 (2003).

    Article  ADS  Google Scholar 

  8. I. V. Panov et al., “Neutron-induced astrophysical reaction rates for translead nuclei,” Astron. Astrophys. 513, A61 (2010).

    Article  Google Scholar 

  9. T. Kodama and K. Takahashi, “R-process nucleosynthesis and nuclei far from the region of β-stability,” Nucl. Phys. A 239, 489—510 (1975).

    Article  ADS  Google Scholar 

  10. M. G. Itkis, V. N. Okolovich, and G. N. Smirenkin, “Symmetric and asymmetric fission of nuclei lighter than radium,” Nucl. Phys. 502, 243—260 (1989).

    Article  Google Scholar 

  11. I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, “The r-process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with A ≤ 130,” Astron. Lett. 34, 189—197 (2008).

    Article  ADS  Google Scholar 

  12. I. Yu. Korneev and I. V. Panov, “Contribution of fission to heavy-element nucleosynthesis in an astrophysical r-process,” Astron. Lett. 37, 864—873 (2011).

    Article  ADS  Google Scholar 

  13. I. V. Panov and A. D. Dolgov, “Effect of spontaneous fission models on the production of cosmochronometer nuclei in the r-process,” JETP Lett. 98, 446—449 (2013).

    Article  ADS  Google Scholar 

  14. K.-H. Schmidt and B. Jurado, “Global view on fission observables–new insights and new puzzles,” Phys. Proc. 31, 147—157 (2012).

    Article  ADS  Google Scholar 

  15. A. Kelic et al., “Cross sections and fragment distributions from neutrino-induced fission on r-process nuclei,” Phys. Lett. B 616, 48—58 (2005).

    Article  ADS  Google Scholar 

  16. S. Panebianco et al., “Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes,” Phys. Rev. C 86, 064601 (2012).

    Article  ADS  Google Scholar 

  17. B. D. Wilkins, E. P. Steinberg, and R. R. Chasman, “Scission-point model of nuclear fission based on deformed-shell effects,” Phys. Rev. C 14, 1832—1863 (1976).

    Article  ADS  Google Scholar 

  18. O. Korobkin et al., “On the astrophysical robustness of the neutron star merger r-process,” Monthly Notices Royal Acad. Sci. 426, 1940—1949 (2012).

    Article  ADS  Google Scholar 

  19. M. Eichler et al., “The role of fission in neutron star mergers and its impact on the r-process peaks,” Astrophys. J. 808, 30—42 (2015).

    Article  ADS  Google Scholar 

  20. S. Goriely, “The fundamental role of fission during r‑process nucleosynthesis in neutron star mergers,” Eur. Phys. J. A 51, 22 (2015).

    Article  ADS  Google Scholar 

  21. S. Goriely et al., “New fission fragment distributions and r-process origin of the rare-earth elements,” Phys. Rev. Lett. 111, 242502 (2013).

    Article  ADS  Google Scholar 

  22. J.-F. Lemaître et al., “Fission fragment distributions and their impact on the r-process nucleosynthesis in neutron star mergers,” Phys. Rev. C 103, 025806 (2021).

    Article  ADS  Google Scholar 

  23. I. V. Panov, “Mass distribution of fission fragments and abundances of heavy nuclei produced in the r-process,” Phys. At. Nucl. 84, 683—693 (2021).

    Article  Google Scholar 

  24. C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, “r-process in neutron star mergers,” Astrophys. J. 525, L121–L124 (1999).

    Article  ADS  Google Scholar 

  25. J. M. Pearson, R. C. Nayak, and S. Goriely, “Nuclear mass formula with Bogolyubov-enhanced shell-quenching: Application to r-process,” Phys. Lett. B 387, 455—459 (1996).

    Article  ADS  Google Scholar 

  26. P. Möller, B. Pfeiffer, and K.-L. Kratz, “New calculations of gross b-decay properties for astrophysical applications: Speeding-up the classical r process,” Phys. Rev. C 67, 055802 (2003).

    Article  ADS  Google Scholar 

  27. I. V. Panov et al., “Influence of spontaneous fission rates on the yields of superheavy elements in the r-process,” Astron. Lett. 39, 150—160 (2013).

    Article  ADS  Google Scholar 

  28. R. Vandenbosch and J. R. Huizeng, Nuclear Fission (Academic Press, New York, 1973).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank F.-K. Thielemann and M. Eichler for helpful discussions of the physical processes affecting the formation of peaks on the heavy-nucleus abundance curve.

Funding

The work was supported by the Russian Science Foundation (project no. 21-12-00061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Panov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, I.V. Fission-Fragment Mass Distribution and Heavy Nuclei Nucleosynthesis. Phys. Part. Nuclei 54, 542–546 (2023). https://doi.org/10.1134/S1063779623030267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623030267

Keywords:

Navigation