Skip to main content
Log in

Development of the Active Correlation Method: Theoretical-Methodological Aspect

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The Dubna Gas-Filled Recoil Separator (DGFRS) of the Flerov Laboratory of Nuclear Reactions (FLNR), JINR, is the most advanced facility for the synthesis and study of new superheavy nuclei. In the recent years, new elements with Z = 114 to 118 (Fl, Mc, Lv, Ts, Og) have been successfully synthesized. The DGFRS detection system and a unique method of active correlations for background suppression have played a significant role in these discoveries. Theoretical-methodological aspects of further development of the active correlation method are considered, especially in view of the upcoming commissioning of the new FLNR high-intensity DC-280 cyclotron for acceleration of heavy ions and the new gas-filled recoil separator. A numerical model of the edge effects between the neighboring strips on the pn junction side of the DSSSD detector is presented. The corresponding empirical examples are given. A more flexible real-time algorithm is considered as a possible substitute for the current version with the rigidly set parameters. Since stability of the calibration parameters is strongly required for applying the method, the radiation stability factor is also briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yu. S. Tsyganov and A. N. Polyakov, Nucl. Instrum. Methods Phys. Res., Sect. A 513, 413–416 (2003).

    Google Scholar 

  2. Yu. Tsyganov and A. Polyakov, Cybernetics and Physics 3, 85–90 (2014).

    Google Scholar 

  3. Yu. S. Tsyganov, Phys. Part. Nucl. Lett. 12, 74–82 (2015).

    Article  Google Scholar 

  4. Yu. S. Tsyganov, A. N. Polyakov, V. G. Subbotin, S. N. Iliev, A. M. Sukhov, A. A. Voinov, and V. I. Tomin, Nucl. Instrum. Methods Phys. Res., Sect. A 525, 213–216 (2004).

    Google Scholar 

  5. Yu. S. Tsyganov, Phys. Part. Nucl. 40, 822–846 (2009).

    Article  Google Scholar 

  6. Yu. S. Tsyganov, Phys. Part. Nucl. Lett. 8, 374–378 (2011).

    Article  Google Scholar 

  7. Yu. Ts. Oganessian et al., Phys. Rev. Lett. 108, 022502 (2012).

    Article  ADS  Google Scholar 

  8. Yu. Ts. Oganessian et al., Phys. Rev. C 74, 044602.

  9. Yu. S. Tsyganov et al., in Proceedings of the 26th International Symposium on Nuclear Electronics and Computing (NEC 2017), Budva, Montenegro, September 25–29, 2017, pp. 309–317

  10. W. Seibt, K. E. Sundström, and P. A. Tove, Nucl. Instrum. Methods 113, 317–324 (1973).

    Article  ADS  Google Scholar 

  11. L. Shlattauer et al., in Proceedings of the 26th International Symposium on Nuclear Electronics and Computing (NEC 2017), Budva, Montenegro, September 25–29, 2017, pp. 265–270.

  12. A. G. Popeko, Nucl. Instrum. Methods Phys. Res., Sect. B 376, 144–149 (2016).

    Google Scholar 

  13. Yu. S. Tsyganov, Low-Background Methods in Nuclear Physics (Lambert Academic Publishing, 2017) [in Russian].

    Google Scholar 

  14. Yu. S. Tsyganov, in Book of Abstracts of the International Conference “Mathematical Modeling and Computational Physics, 2017” (MMCP2017), Dubna, Russia, July 3–7, 2017 (Joint Inst. Nucl. Res., Dubna, 2017).

  15. V. B. Zlokazov, Phys. At. Nucl. 66, 1666–1670 (2003).

    Article  Google Scholar 

  16. K.-H. Schmidt et al., Z. Phys. A 316, 19–26 (1984).

    Article  ADS  Google Scholar 

  17. Yu. Tsyganov, Phys. Part. Nucl. Lett. 6, 59–62 (2009).

    Article  Google Scholar 

  18. Yu. Tsyganov, Phys. Part. Nucl. Lett. 8, 374–378 (2011).

    Article  Google Scholar 

  19. Yu. S. Tsyganov, Nucl. Instrum. Methods Phys. Res., Sect. A 378, 356–359 (1996).

    Google Scholar 

  20. V. K. Utyonkov, N. T. Brewer, Yu. Ts. Oganessian, et al., Phys. Rev. C 97, 014320 (2018).

    Article  ADS  Google Scholar 

  21. V. K. Utyonkov, N. T. Brewer, Yu. Ts. Oganessian, et al., Phys. Rev. C 92, 034609 (2015).

    Article  ADS  Google Scholar 

  22. Yu. S. Tsyganov and A. N. Polyakov, Nucl. Instrum. Methods Phys. Res., Sect. A 558, 329–332 (2006).

    Google Scholar 

  23. Yu. Tsyganov, A. Polyakov, A. Sukhov, and V. Zlokazov, “On-line data processing in the Dubna Gas Filled Recoil Separator experiments,” in Proceedings of the International Conference “Mathematical Modeling and Computational Physics, 2011” (MMCP2011), Stara Lesna, Slovakia, July 4–8 (Springer, Berlin, 2012).

  24. Yu. S. Tsyganov, “Synthesis of new superheavy elements using the Dubna Gas-Filled Separator: The complex of technologies,” Phys. Part. Nucl. 45, 817–847 (2014).

    Article  Google Scholar 

  25. V. K. Utyonkov, personal communication, 2018.

  26. Yu. K. Akimov, V. F. Kushniruk, O. V. Ignat’ev, and A. I. Kalinin, Semiconductor Detectors in Experimental Physics (Energoatomizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  27. Yu. P. Gangrskii, B. N. Markov, and V. I. Perelygin, Registration and Spectrometry of Fission Fragments (Energoizdat, Moscow, 1981), p. 92, Table 17 [in Russian].

  28. M. Kurokava et al., “Radiation damage factor for ion-implanted silicon detectors irradiated with heavy ions,” IEEE Trans. Nucl. Sci. 42, 163–166 (1995).

    Article  ADS  Google Scholar 

  29. Yu. S. Tsyganov, Report at IEEE Nucl. Sci. Symposium, Strasbourg, France, November 04, 2016.

  30. B. D. Wilkins et al., Nucl. Instrum. Methods 92, 381(1971).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Voinov and V.G. Subbotin for their assistance. The work was supported in part by the Russian Foundation for Basic Research, project no. 16-52-55002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Tsyganov.

Additional information

Translated by M. Potapov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganov, Y.S., Polyakov, A.N., Kazacha, V.I. et al. Development of the Active Correlation Method: Theoretical-Methodological Aspect. Phys. Part. Nuclei 49, 1036–1045 (2018). https://doi.org/10.1134/S1063779618060035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618060035

Keywords

Navigation