Skip to main content
Log in

High Energy Neutrino Astronomy: Where Do We Stand, Where Do We Go?

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

With the identification of a diffuse flux of astrophysical (“cosmic”) neutrinos in the TeV–PeV energy range, IceCube has opened a new window to the Universe. However, the corresponding cosmic landscape is still uncharted: so far, the observed flux does not show any clear association with known source classes. In the present talk, I sketch the way from Baikal-NT200 to IceCube and summarize IceCube’s recent astrophysics results. Finally, I describe the present projects to built even larger detectors: GVD in Lake Baikal, KM3NeT in the Mediterranean Sea and IceCube-Gen2 at the South Pole. These detectors will allow studying the high-energy neutrino sky in much more detail than the present arrays permit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. C. Spiering, Eur. Phys. J. H 37, 515 (2012).

    Article  Google Scholar 

  2. M. G. Aartsen et al. (IceCube Collab.), Science 342, 1242856 (2013).

    Article  Google Scholar 

  3. S. Adrián-Martínez et al. (KM3NeT Collab.), J. Phys. G 43, 084001 (2016).

    Article  ADS  Google Scholar 

  4. A. Avronin et al. (Baikal Collab.), Phys. Part. Nucl. 46, 211 (2015).

    Article  Google Scholar 

  5. M. G. Aartsen et al. (IceCube Collab.), arXiv:1412.5106.

  6. M. G. Aartsen et al. (IceCube Collab.), Astrophys. J. 835, 151 (2017).

    Article  ADS  Google Scholar 

  7. R. Balkanov et al. (Baikal Collab.), Astropart. Phys. 12, 75 (1997).

    Article  ADS  Google Scholar 

  8. I. Belolaptikov and C. Spiering, Baikal-Amanda Internal report, 2005.

  9. P. Coyle and C. W. James, arXiv:1701.02144.

  10. M. G. Aartsen et al. (IceCube Collab.), JINST 12 (3) P03012 (2017).

  11. P. Lipari, Nucl. Instrum. Methods A 567, 405 (2006).

    Article  ADS  Google Scholar 

  12. M. G. Aartsen et al., Phys. Rev. Lett. 111, 021103 (2013).

    Article  ADS  Google Scholar 

  13. C. Kopper (IceCube Collab.), ICRC (2017).

    Google Scholar 

  14. M. G. Aartsen et al. (IceCube Collab.) Astrophys. J. 833, 3 (2016).

    Article  ADS  Google Scholar 

  15. C. Haack and C. Wiebusch (IceCube Collab.), ICRC (2017).

    Google Scholar 

  16. M. G. Aartsen et al. (IceCube Collab.), Astrophys. J. 808, 98 (2015).

    Article  ADS  Google Scholar 

  17. S. Adrián-Martínez et al. (ANTARES Collab.), Astrophys. J. 786, L5 (2014).

    Article  ADS  Google Scholar 

  18. D. Gaggero, D. Grasso, A. Marinelli, A. Urbano, and M. Valliet, Astrophys. J. 815, L25 (2015).

    Article  ADS  Google Scholar 

  19. C. Haack and J. Dumm (IceCube Collab.), ICRC (2017).

    Google Scholar 

  20. M. Petropoulou, S. Dimitrakoudis, P. Padovani, A. Mastichiadis, and E. Resconi, Mon. Not. R. Astron. Soc. 448, 2412 (2015).

    Article  ADS  Google Scholar 

  21. M. Huber and K. Krings (IceCube Collab.), ICRC (2017).

    Google Scholar 

  22. M. G. Aartsen et al. (IceCube Collab.), Astrophys. J. 843, 112 (2017).

    Article  ADS  Google Scholar 

  23. M. Ahlers, M. Gonzalez-Garcia, and F. Halzen, Astropart. Phys. 35, 87 (2011).

    Article  ADS  Google Scholar 

  24. E. Waxmann and J. Bahcall, Phys. Rev. Lett. 78, 2292 (1997).

    Article  ADS  Google Scholar 

  25. R.Abbasi et al. (IceCube Collab.), Astron. Astrophys. 535, A109 (2011).

    Article  Google Scholar 

  26. http://snews.bnl.gov/.

  27. E. Blaufuss (IceCube Collab.), ICRC (2017);

    Google Scholar 

  28. M. G. Aartsen et al. (IceCube Collab.), Astrophys. J. 811, 52 (2015).

    Article  ADS  Google Scholar 

  29. S. Adrián-Martínez et al. (ANTARES, TAROT, ROTSE, Swift and Zadko Collab.), JCAP 1602 (2) 062 (2016).

  30. https://gcngsfc.nasa.gov/. http://amon.gravity.psu.edu/.

  31. M. G. Aartsen et al. (IceCube, PTF, SWIFT Collab.), Astrophys. J. 811, 52 (2015).

    Article  ADS  Google Scholar 

  32. M. G. Aartsen et al. (IceCube Collab.), arXiv:1702.06131.

  33. M. Albert et al. (ANTARES, IceCube Collab.), arXiv:1703.06298.

  34. V. Berezinsky and G. Zatsepin, Yad. Fiz. 11, 200 (1970).

    Google Scholar 

  35. Zh. Djilkibaev (Baikal Collab.), ICRC (2017).

    Google Scholar 

  36. http://www.globalneutrinonetwork.org/.

  37. S. Adrián-Martínez et al., Astrophys. J. 823, 65 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Spiering.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiering, C. High Energy Neutrino Astronomy: Where Do We Stand, Where Do We Go?. Phys. Part. Nuclei 49, 497–507 (2018). https://doi.org/10.1134/S1063779618040536

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618040536

Keywords

Navigation