Advertisement

Physics of Particles and Nuclei

, Volume 48, Issue 4, pp 564–621 | Cite as

Quantum groups as generalized gauge symmetries in WZNW models. Part II. The quantized model

Article

Abstract

This is the second part of a paper dealing with the “internal” (gauge) symmetry of the Wess–Zumino–Novikov–Witten (WZNW) model on a compact Lie group G. It contains a systematic exposition, for G = SU(n), of the canonical quantization based on the study of the classical model (performed in the first part) following the quantum group symmetric approach first advocated by L.D. Faddeev and collaborators. The internal symmetry of the quantized model is carried by the chiral WZNW zero modes satisfying quadratic exchange relations and an n-linear determinant condition. For generic values of the deformation parameter the Fock representation of the zero modes’ algebra gives rise to a model space of U q (sl(n)). The relevant root of unity case is studied in detail for n = 2 when a “restricted” (finite dimensional) quotient quantum group is shown to appear in a natural way. The module structure of the zero modes’ Fock space provides a specific duality with the solutions of the Knizhnik–Zamolodchikov equation for the four point functions of primary fields suggesting the existence of an extended state space of logarithmic CFT type. Combining left and right zero modes (i.e., returning to the 2D model), the rational CFT structure shows up in a setting reminiscent to covariant quantization of gauge theories in which the restricted quantum group plays the role of a generalized gauge symmetry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Alekseev and L. D. Faddeev, “(TG)t: A toy model for conformal field theory”, Commun. Math. Phys. 141, 413–422 (1991).ADSMATHCrossRefGoogle Scholar
  2. 2.
    A. Alekseev and S. Shatashvili, “Quantum groups and WZNW models”, Commun. Math. Phys. 133, 353–368 (1990).ADSMathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    O. Babelon, “Extended conformal algebra and the Yang-Baxter equation”, Phys. Lett. B 215, 523–529 (1988).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    O. Babelon, D. Bernard, and E. Billey, “A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols”, Phys. Lett. B 375, 89–97 (1996), arXiv:q-alg/9511019.ADSMathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, “Models of representations of compact Lie groups“, Funct. Anal. Appl. 9, 61–62 (1975).Google Scholar
  6. 5a.
    I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, “Representation models for compact Lie groups“, Selecta Math. Sov. 1, 121–142 (1981).Google Scholar
  7. 6.
    N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1990).MATHCrossRefGoogle Scholar
  8. 7.
    A. G. Bytsko and L. D. Faddeev, “(T*B), q-analogue of model space and the CGC generating matrices”, J. Math. Phys. 37, 6324–6348 (1996), arXiv:qalg/ 9508022.ADSMathSciNetMATHCrossRefGoogle Scholar
  9. 8.
    P. Cartier, “A primer of Hopf algebras”, Preprint IHES/M/06/40 (IHES Bures-sur-Yvette, 2006). http://inc.web.ihes.fr/prepub/PREPRINTS/2006/M/ M-06-40.pdf.Google Scholar
  10. 9.
    A. Cappelli, C. Itzykson, and J.-B. Zuber, “Modular invariant partition functions in two dimensions”, Nucl. Phys. B 280 [FS], 445–465 (1987).ADSMathSciNetMATHCrossRefGoogle Scholar
  11. 10.
    V. Chari and A. Pressley, A Guide to Quantum Groups (Cambridge University Press, 1994).MATHGoogle Scholar
  12. 11.
    I. V. Cherednik, “Factorizing particles on a half-line and root systems”, Theor. Math. Phys. 61, 977–983 (1984).MathSciNetMATHCrossRefGoogle Scholar
  13. 12.
    P. Christe and R. Flume, “The four-point correlations of all primary operators of the d = 2 conformally invariant SU(2) sigma model with Wess-Zumino term”, Nucl. Phys. B 282, 466–494 (1987).ADSCrossRefGoogle Scholar
  14. 13.
    R. J. Clarke, E. Steingrimsson, and J. Zeng, “New Euler-Mahonian statistics on permutations and words”, Adv. Appl. Math. 18, 237–270 (1997).MathSciNetMATHCrossRefGoogle Scholar
  15. 14.
    C. De Concini, V. G. Kac, “Representations of quantum groups at roots of 1”, in: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Birkhäuser, Boston, 1990), pp. 471–506.Google Scholar
  16. 15.
    P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory (Springer, New York, 1997).MATHCrossRefGoogle Scholar
  17. 16.
    V. S. Dotsenko and V. A. Fateev, “Conformal algebra and multipoint correlation functions in 2D statistical model”, Nucl. Phys. B 240, 312–348 (1984).ADSCrossRefGoogle Scholar
  18. 17.
    V. G. Drinfeld, “Hopf algebra and the quantum Yang- Baxter equation”, Dokl. Akad. Nauk SSSR 283, 1060–1064 (1985).MathSciNetGoogle Scholar
  19. 17a.
    V. G. Drinfeld, “Quantum groups”, in Proc. of the International Congress of Mathematicians, Vol. 1 (Academic Press, Berkeley, 1986), pp. 798–820.Google Scholar
  20. 18.
    V. G. Drinfeld, “On almost cocommutative Hopf algebras”, Leningrad Math. J. 1, 321–342 (1990).MathSciNetMATHGoogle Scholar
  21. 19.
    M. Dubois-Violette, P. Furlan, L. K. Hadjiivanov, A. P. Isaev, P. N. Pyatov, and I. T. Todorov, “A finite dimensional gauge problem in the WZNW model”, in Quantum Theory and Symmetries, Proc. International Symp. (Goslar, Germany, 1999), Ed. by H.-D. Doebner and V. Dobrev (World Scientific, Singapore, 2000), pp. 331–349, arXiv:hep-th/9910206.Google Scholar
  22. 20.
    M. Dubois-Violette and I. T. Todorov, “Generalized cohomologies and the physical subspace of the SU(2) WZNW model”, Lett. Math. Phys. 42, 183–192 (1997), arXiv:hep-th/9704069.MathSciNetMATHCrossRefGoogle Scholar
  23. 20a.
    M. Dubois-Violette and I. T. Todorov, “Generalized homologies for the zero modes of the SU(2) WZNW model”, Lett. Math. Phys. 48, 323–338 (1999), arXiv:math.QA/9905071.MathSciNetMATHCrossRefGoogle Scholar
  24. 21.
    P. Etingof and D. Nikshych, “Dynamical quantum groups at roots of 1”, Duke Math. J. 108, 135–168 (2001), arXiv:math.QA/0003221.MathSciNetMATHCrossRefGoogle Scholar
  25. 22.
    P. Etingof and A. Varchenko, “Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups”, Commun. Math. Phys. 196, 591–640 (1998), arXiv:q-alg/9708015.ADSMathSciNetMATHCrossRefGoogle Scholar
  26. 23.
    L. D. Faddeev, “On the exchange matrix for WZNW model”, Commun. Math. Phys. 132, 131–138 (1990).ADSMathSciNetMATHCrossRefGoogle Scholar
  27. 24.
    L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J. 1, 193–225 (1990).MathSciNetMATHGoogle Scholar
  28. 25.
    B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, “Modular group representations and fusion in LCFT and in the quantum group center”, Commun. Math. Phys. 265, 47–93 (2006), arXiv:hep-th/0504093.ADSMATHCrossRefGoogle Scholar
  29. 26.
    B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, “Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT”, Theor. Math. Phys. 148, 1210–1235 (2006), arXiv:math.QA/0512621.MATHCrossRefGoogle Scholar
  30. 27.
    G. Felder, “Conformal field theory and integrable systems associated to elliptic curves”, in Proc. of the International Congress of Mathematicians (ICM 1994) (Zürich, Switzerland, 1994), Ed. by S. D. Chatterji (Birkhäuser, Basel, 1995), pp. 1247–1255, arXiv:hepth/9407154.CrossRefGoogle Scholar
  31. 27a.
    G. Felder, “Elliptic quantum groups”, in Proc. of the XIth International Congress of Mathematical Physics (Paris, France, 1994), Ed. by D. Iagolnitzer (International Press Inc., Cambridge MA, 1995), pp. 211–218, arXiv:hep-th/9412207.Google Scholar
  32. 28.
    M. A. I. Flohr, “On modular invariant partition functions of conformal field theories with logarithmic operators”, Int. J. Mod. Phys. A 11, 4147–4172 (1996), arXiv:hep-th/9509166.ADSMathSciNetMATHCrossRefGoogle Scholar
  33. 29.
    E. Frenkel and E. Mukhin, “The Hopf algebra Rep U q gl”, Selecta Math., New Ser. 8, 537–635 (2002), arXiv:math.QA/0103126.MATHGoogle Scholar
  34. 30.
    J. Fröhlich and T. Kerler, “Quantum groups, quantum categories and quantum field theory”, in Lecture Notes in Mathematics, Vol. 1542 (Springer, Berlin, 1993).Google Scholar
  35. 31.
    W. Fulton and J. Harris, Representation Theory. A First Course (Springer, New York, 1997).MATHGoogle Scholar
  36. 32.
    P. Furlan, A. Ch. Ganchev, and V. B. Petkova, “Solutions of the Knizhnik-Zamolodchikov equation with rational isospins and the reduction to the minimal models”, Nucl. Phys. B 394, 665–706 (1993).ADSMathSciNetMATHCrossRefGoogle Scholar
  37. 33.
    P. Furlan and L. K. Hadjiivanov, “From chiral to twodimensional Wess-Zumino-Novikov-Witten model via quantum gauge group”, Rep. Math. Phys. 43, 123–136 (1999).ADSMathSciNetMATHCrossRefGoogle Scholar
  38. 34.
    P. Furlan and L. Hadjiivanov, “Quantum monodromy matrices”, J. Phys. A 45, 165202 (2012) (16p.), arXiv:arXiv:1111.2037[math-ph].ADSMathSciNetMATHCrossRefGoogle Scholar
  39. 35.
    P. Furlan, L. Hadjiivanov, A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, and I. Todorov, “Quantum matrix algebra for the SU(n) WZNW model”, J. Phys. A 36, 5497–5530 (2003), arXiv:hep-th/0003210.ADSMathSciNetMATHCrossRefGoogle Scholar
  40. 36.
    P. Furlan, L. K. Hadjiivanov, and I. T. Todorov, “Operator realization of the SU(2) WZNW model”, Nucl. Phys. B 474, 497–511 (1996), arXiv:hepth/ 9602101.ADSMathSciNetMATHCrossRefGoogle Scholar
  41. 37.
    P. Furlan, L. Hadjiivanov, and I. Todorov, “A quantum gauge approach to the 2D SU(n) WZNW model”, Int. J. Mod. Phys. A 12, 23–32 (1997), arXiv:hepth/ 9610202.ADSMATHCrossRefGoogle Scholar
  42. 38.
    P. Furlan, L. Hadjiivanov, and I. Todorov, “Zero modes’ fusion ring and braid group representations of the extended chiral su(2) WZNW model”, Lett. Math. Phys. 82, 117–151 (2007), arXiv:0710.1063v3[hep-th].ADSMathSciNetMATHCrossRefGoogle Scholar
  43. 39.
    P. Furlan, G. M. Sotkov, and I. T. Todorov, “Twodimensional conformal field theory”, Riv. Nuovo Cimento 12 (6), 1–202 (1989).MathSciNetCrossRefGoogle Scholar
  44. 40.
    A. Gainutdinov, D. Ridout, and I. Runkel eds., “Special issue on logarithmic conformal field theory”, J. Phys. A: Math. Theor. 0301, 494001–494015 (2013).Google Scholar
  45. 41.
    A. M. Gainutdinov and I. Yu. Tipunin, “Radford, Drinfeld, and Cardy boundary states in (1, p) logarithmic conformal field models”, J. Phys. A 42, 315207 (2009), arXiv:0711.3430[hep-th].MathSciNetMATHCrossRefGoogle Scholar
  46. 42.
    K. Gawedzki, “Classical origin of quantum group symmetries in Wess-Zumino-Witten conformal field theory”, Commun. Math. Phys. 139, 201–213 (1991).ADSMathSciNetMATHCrossRefGoogle Scholar
  47. 43.
    K. Gawedzki and N. Reis, “WZW branes and gerbes”, Rev. Math. Phys. 14, 1281–1334 (2002), arXiv:hepth/ 0205233.MathSciNetMATHCrossRefGoogle Scholar
  48. 44.
    D. Gepner and E. Witten, “String theory on group manifolds”, Nucl. Phys. B 278, 493–549 (1986).ADSMathSciNetCrossRefGoogle Scholar
  49. 45.
    J.-L. Gervais and A. Neveu, “Novel triangle relation and absence of tachions in Liouville theory”, Nucl. Phys. B 238, 125–141 (1984).ADSCrossRefGoogle Scholar
  50. 46.
    P. Goddard and D. Olive, “Kac-Moody and Virasoro algebras in relation to quantum physics”, Int. J. Mod. Phys. 1, 303–414 (1986).ADSMathSciNetMATHCrossRefGoogle Scholar
  51. 47.
    F. M. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter Graphs and Towers of Algebras (Springer, Berlin, New York, 1989).MATHCrossRefGoogle Scholar
  52. 48.
    V. Gurarie, “Logarithmic operators in conformal field theory”, Nucl. Phys. B 410, 535–549 (1993), arXiv:hep-th/9303160.ADSMathSciNetMATHCrossRefGoogle Scholar
  53. 49.
    D. I. Gurevich, “Algebraic aspects of the quantum Yang-Baxter equation”, Leningrad Math. J. 2, 801–828 (1991).MathSciNetMATHGoogle Scholar
  54. 50.
    D. I. Gurevich, P. N. Pyatov, and P. A. Saponov, “Hecke symmetries and characteristic relations for reflection equation algebras”, Lett. Math. Phys. 41, 255–264 (1997), arXiv:q-alg/9605048.MathSciNetMATHCrossRefGoogle Scholar
  55. 51.
    L. Hadjiivanov and P. Furlan, “On quantum WZNW monodromy matrix—factorization, diagonalization, and determinant”, in Proc. IX International Workshop “Lie Theory and Its Applications in Physics” (Varna, Bulgaria, 2011), Ser.: Springer Proceedings in Mathematics and Statistics, 2013, Vol. 36, pp. 287–297, arXiv:1112.6274[math-ph].Google Scholar
  56. 52.
    L. Hadjiivanov and P. Furlan, “SU(n) WZNW fusion and a Q-algebra”, Bulg. J. Phys. 40 (2), 141–146 (2013).MathSciNetGoogle Scholar
  57. 53.
    L. Hadjiivanov and P. Furlan, “On the 2D zero modes’ algebra of the SU(n) WZNW model”, in Proc. X International Workshop “Lie Theory and Its Applications in Physics” (Varna, Bulgaria, 2013), Ser.: Springer Proceedings in Mathematics and Statistics, 2014, Vol. 111, pp. 381–391, arXiv:1401.4394 [math-ph].Google Scholar
  58. 54.
    L. Hadjiivanov and P. Furlan, “‘Spread’ restricted young diagrams from a 2D WZNW dynamical quantum group,” in Proceedings of the 11th International Workshop on Lie Theory and Its Applications in Physics, Varna, Bulgaria, 2015, Ser.: Springer Proceedings in Mathematics and Statistics, 2016, Vol. 191, pp. 501–510, arXiv: 1512.09031[math-ph]Google Scholar
  59. 55.
    L. K. Hadjiivanov, A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, and I. T. Todorov, “Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras”, J. Math. Phys. 40, 427–448 (1999), arXiv:q-alg/9712026.ADSMathSciNetMATHCrossRefGoogle Scholar
  60. 56.
    L. Hadjiivanov and T. Popov, “On the rational solutions of the Knizhnik–Zamolodchikov equation”, Eur. Phys. J. B 29, 183–187 (2002), arXiv:hepth/0109219.ADSMathSciNetCrossRefGoogle Scholar
  61. 57.
    L. K. Hadjiivanov, Ya. S. Stanev, and I. T. Todorov, “Regular basis and R-matrices for the Knizhnik–Zamolodchikov equation”, Lett. Math. Phys. 54, 137–155 (2000), arXiv:hep-th/0007187.MathSciNetMATHCrossRefGoogle Scholar
  62. 58.
    A. P. Isaev, “Twisted Yang-Baxter equations for linear quantum (super)groups”, J. Phys. A 29, 6903–6910 (1996), arXiv:q-alg/9511006.ADSMathSciNetMATHCrossRefGoogle Scholar
  63. 59.
    J. C. Jantzen, “Lectures on quantum groups”, Graduate Studies in Mathematics, Vol. 6 (AMS, Providence, RI, 1996).MATHGoogle Scholar
  64. 60.
    M. Jimbo, “A q-difference analogue of U(g) and the Yang-Baxter equation”, Lett. Math. Phys. 10, 63–69 (1985).ADSMathSciNetMATHCrossRefGoogle Scholar
  65. 60a.
    M. Jimbo, “A q-analogue of the U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation”, Lett. Math. Phys. 11, 247–252 (1986).ADSMathSciNetMATHCrossRefGoogle Scholar
  66. 61.
    V. F. R. Jones, “Index for subfactors”, Inv. Math. 72, 1–25 (1983).ADSMathSciNetMATHCrossRefGoogle Scholar
  67. 62.
    V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras”, Bull. Am. Math. Soc. 12, 103–112 (1985).MathSciNetMATHCrossRefGoogle Scholar
  68. 63.
    V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed. (Cambridge University Press, Cambridge, 1990).Google Scholar
  69. 64.
    V. G. Kac, “Vertex algebras for beginners”, in University Lecture Series, Vol. 10, 2nd ed. (AMS, Providence, RI, 1998).Google Scholar
  70. 65.
    V. G. Kac and A. K. Raina, “Bombay lectures on highest weight representations of infinite dimensional Lie algebras”, in Advanced Series in Mathematical Physics, Vol. 2 (World Scientific, Singapore, 1987).Google Scholar
  71. 66.
    C. Kassel, Quantum Groups (Springer, New York, 1995).MATHCrossRefGoogle Scholar
  72. 67.
    S. M. Khoroshkin and V. N. Tolstoy, “Universal R-matrix for quantized (super)algebras”, Commun. Math. Phys. 141, 599–617 (1991).ADSMathSciNetMATHCrossRefGoogle Scholar
  73. 68.
    A. N. Kirillov and N. Yu. Reshetikhin, “q-Weyl group and a multiplicative formula for universal R-matrices”, Commun. Math. Phys. 134, 421–431 (1990).ADSMathSciNetMATHCrossRefGoogle Scholar
  74. 69.
    V. G. Knizhnik and A. B. Zamolodchikov, “Current algebra and Wess-Zumino model in two dimensions”, Nucl. Phys. B 247, 83–103 (1984).ADSMathSciNetMATHCrossRefGoogle Scholar
  75. 70.
    C. Korff, “The su(n) WZNW fusion ring as integrable model: a new algorithm to compute fusion coefficients”, RIMS Kokyuroku Bessatsu B 28, 121–153 (2011), arXiv:1106.5342[math-ph].MathSciNetMATHGoogle Scholar
  76. 71.
    C. Korff and C. Stroppel, “The sl(n)-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology”, Adv. Math. 225 (1), 200–268 (2010), arXiv:0909.2347[math.RT].MathSciNetMATHCrossRefGoogle Scholar
  77. 72.
    S. Z. Levendorskii and Ya. S. Soibelman, “Some applications of quantum Weyl groups”, J. Geom. Phys. 7, 241–254 (1990).ADSMathSciNetCrossRefGoogle Scholar
  78. 73.
    G. Lusztig, “Finite dimensional Hopf algebras arising from quantized universal enveloping algebras”, J. Am. Math. Soc. 3, 257–296 (1990).MathSciNetMATHGoogle Scholar
  79. 73a.
    G. Lusztig, “Quantum groups at roots of 1”, Geom. Dedicata 35, 89–114 (1990).MathSciNetMATHCrossRefGoogle Scholar
  80. 74.
    G. Lusztig, “Introduction to quantum groups”, in Progress in Math., Vol. 110 (Birkhäuser, Boston, 1993).Google Scholar
  81. 75.
    S. Majid, Foundations of Quantum Group Theory (Cambridge University Press, 1995).MATHCrossRefGoogle Scholar
  82. 75a.
    S. Majid, A Quantum Groups Primer (Cambridge University Press, 2002).MATHCrossRefGoogle Scholar
  83. 76.
    L. Michel, Ya. S. Stanev, and I. T. Todorov, “D-E classification of the local extensions of SU2 current algebras”, Theor. Math. Phys. 92, 1063–1074 (1992).CrossRefGoogle Scholar
  84. 77.
    G. Moore and N. Reshetikhin, “A comment on quantum group symmetry in conformal field theory”, Nucl. Phys. B 328, 557–574 (1989).ADSMathSciNetCrossRefGoogle Scholar
  85. 78.
    A. Nichols, “The origin of multiplets of chiral fields in WZNW at rational level”, JSTAT 0409, 006 (2004), arXiv:hep-th/0307050.Google Scholar
  86. 79.
    A. Nichols, “Extended chiral algebras and the emergence of SU(2) quantum numbers in the Coulomb gas”, JHEP 0308, 040 (2003), arXiv:hep-th/0302075.ADSMathSciNetCrossRefGoogle Scholar
  87. 80.
    V. Pasquier, “Operator content of the ADE lattice models”, J. Phys. A 20, 5707–5717 (1987).ADSMathSciNetCrossRefGoogle Scholar
  88. 81.
    V. Pasquier and H. Saleur, “Common structures between finite systems and conformal field theories through quantum groups”, Nucl. Phys. B 330, 523–556 (1990).ADSMathSciNetCrossRefGoogle Scholar
  89. 82.
    W. Pusz and S. L. Woronowicz, “Twisted second quantization”, Rep. Math. Phys. 27, 231–257 (1989).ADSMathSciNetMATHCrossRefGoogle Scholar
  90. 83.
    N. Y. Reshetikhin and M. A. Semenov-Tian-Shansky, “Quantum R-matrices and factorization problems”, J. Geom. Phys. 5, 533–550 (1988).ADSMathSciNetMATHCrossRefGoogle Scholar
  91. 84.
    V. Rittenberg and M. Scheunert, “Tensor operators for quantum groups and applications”, J. Math. Phys. 33, 436–445 (1992).ADSMathSciNetMATHCrossRefGoogle Scholar
  92. 85.
    O. Rodrigues, “Note sur les inversion, ou dérangements produits dans les permutations”, Journal de Mathématiques Pures et Appliquées 4, 236–240 (1839).Google Scholar
  93. 86.
    M. Rosso, “An analogue of the P.B.W. theorem and the universal R-matrix for”, Commun. Math. Phys. 124, 307–318 (1989).ADSMathSciNetMATHCrossRefGoogle Scholar
  94. 87.
    L. Rozansky and H. Saleur, “Quantum field theory for the multivariable Alexander-Conway polynomial”, Nucl. Phys. B 376, 461–509 (1992).ADSCrossRefGoogle Scholar
  95. 88.
    M. Scheunert, “The tensor product of tensor operators over quantum algebras,” Preprint BONN-HE-93-28 (Bonn University, 1993).Google Scholar
  96. 89.
    H.-J. Schneider, “Some properties of factorizable Hopf algebras”, Proc. Am. Math. Soc. 129 (7), 1891–1898 (2001).MathSciNetMATHCrossRefGoogle Scholar
  97. 90.
    A. M. Semikhatov, “Toward logarithmic extensions of conformal field models”, Theor. Math. Phys. 153, 1597–1642 (2007), arXiv:hep-th/0701279.MATHCrossRefGoogle Scholar
  98. 91.
    A. M. Semikhatov and I. Yu. Tipunin, “Logarithmic CFT models from Nichols algebras, I”, J. Phys. A 46, 494011 (2013), arXiv:1301.2235[math.QA].MathSciNetMATHCrossRefGoogle Scholar
  99. 92.
    E. Sklyanin, “Boundary conditions for integrable quantum systems”, J. Phys. A 21, 2375–2389 (1988).ADSMathSciNetMATHCrossRefGoogle Scholar
  100. 93.
    Ya. S. Stanev, I. T. Todorov, and L. K. Hadjiivanov, “Braid invariant rational conformal models with a quantum group symmetry”, Phys. Lett. B 276, 87–94 (1992).ADSMathSciNetCrossRefGoogle Scholar
  101. 94.
    F. Strocchi, “Selected topics on the general properties of quantum field theory”, in Lecture Notes in Physics, Vol. 51 (World Scientific, Singapore, 1993).Google Scholar
  102. 95.
    M. E. Sweedler, Hopf Algebras (Benjamin, New York, 1969).MATHGoogle Scholar
  103. 96.
    H. N. V. Temperley and E. H. Lieb, “Relations between the “percolation” and the “coloring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem”, Proc. Roy. Soc. (London), Ser. A 322, 251–280 (1971).ADSMathSciNetMATHCrossRefGoogle Scholar
  104. 97.
    I. T. Todorov, “Infinite Lie algebras in 2-dimensional conformal field theory”, in Proc. of the XIII International Conference on Differential Geometric Methods in Physics (Shumen, Bulgaria,1984), Ed. by H.-D. Doebner and T. Palev (World Scientific, Singapore, 1986), pp. 297–347.Google Scholar
  105. 97a.
    I. T. Todorov, “Current algebra approach to conformal invariant two-dimensional models”, Phys. Lett. B 153, 77–81 (1985).ADSMathSciNetCrossRefGoogle Scholar
  106. 98.
    I. T. Todorov and L. K. Hadjiivanov, “Monodromy representations of the braid group”, Phys. At. Nucl. 64, 2059–2068 (2001), arXiv:hep-th/0012099.MathSciNetCrossRefGoogle Scholar
  107. 99.
    A. Tsuchiya and Y. Kanie, “Vertex operators in the conformal field theory on and monodromy representations of the braid group”, Lett. Math. Phys. 13, 303–312 (1987)ADSMathSciNetMATHCrossRefGoogle Scholar
  108. 99a.
    A. Tsuchiya and Y. Kanie, “Vertex operators in conformal field theory on and monodromy representations of braid group”, in Conformal Field Theory and Solvable Lattice Models, Ed. by M. Jimbo, T. Miwa, and A. Tsuchiya, Vol. 16 of Adv. Stud. Pure Math. (Academic, Boston, MA, 1988), pp. 297–372.CrossRefGoogle Scholar
  109. 100.
    E. Verlinde, “Fusion rules and modular transformations in 2D conformal field theory”, Nucl. Phys. B 300, 360–375 (1988).ADSMATHCrossRefGoogle Scholar
  110. 101.
    M. A. Walton, “On affine fusion and the phase model”, SIGMA 8, 086 (2012), arXiv:1208.0809[hep-th].MathSciNetMATHGoogle Scholar
  111. 102.
    A. B. Zamolodchikov and V. A. Fateev, “Operator algebra and correlation functions in the two-dimensional SU(2) × SU(2) chiral Wess–Zumino model”, Sov. J. Nucl. Phys. 43, 657–664 (1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Dipartimento di Fisica dell’ Università degli Studi di TriesteTriesteItaly

Personalised recommendations