Skip to main content
Log in

Hadron structure and spectroscopy at COMPASS. Overview of certain tasks

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

COMPASS is a fixed-target experiment at CERN with a long history and intense and diverse physics programme. In the Review we consider particular points of the existing and possible future programme: test of the chiral theory predictions with hadron beam, search for exotic charmonia, study of the EMC effect in the Drell–Yan process, search for production of bound \(p\overline p \) states and study of prompt photon production in hadronic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Baum et al. (COMPASS Collab.), “COMPASS: A proposal for a common muon and proton apparatus for structure and spectroscopy”, CERN-SPSLC-96-14.

  2. P. Abbon et al. (COMPASS Collab.), “COMPASS-II proposal”, CERN-SPSC-2010-014.

  3. P. Abbon et al. (COMPASS Collab.), “The COMPASS experiment at CERN”, Nucl. Instrum. Methods A 577, 455–518 (2007).

    Article  ADS  Google Scholar 

  4. P. Abbon et al. (COMPASS Collab.), “The COMPASS setup for physics with hadron beams”, Nucl. Instrum. Methods A 779, 69–115 (2015).

    Article  ADS  Google Scholar 

  5. C. Quintans (for COMPASS Collab.), “Drell–Yan physics at COMPASS”, in Proc. of XXII International Workshop on Deep-Inelastic Scattering and Related Subjects (Warsaw, Poland, 2014), p. 6.

  6. E. Fuchey (for COMPASS Collab.), “GPD program at COMPASS”, in Proc. of Conf. “QCD Evolution 2015” (Newport News Virginia, USA, Jefferson Lab. (JLAB), 2015), p. 9.

  7. Yu. M. Antipov, V. A. Batarin, V. A. Bessubov, N. P. Budanov, Yu. P. Gorin, S. P. Denisov, I. V. Kotov, A. A. Lebedev, A. I. Petrukhin, S. A. Polovnikov, V. N. Roinishvili, D. A. Stoyanova, P. A. Kulinich, G. V. Mecel’macher, A. G. Ol’shevski, and V. I. Travkin, “Measurement of meson polarizability in pion Compton effect”, Phys. Lett. B 121, 445–448 (1983).

    Article  ADS  Google Scholar 

  8. Yu. M. Antipov, V. A. Batarin, V. A. Bessubov, N. P. Budanov, Yu. P. Gorin, S. P. Denisov, I. V. Kotov, P. A. Kulinich, A. A. Lebedev, and G. V. Mecel’macher, “Experimental evaluation of the sum of the electric and magnetic polarizabilities of pions”, Z. Phys. C 26, 495 (1985).

    Article  ADS  Google Scholar 

  9. T. A. Aibergenov, P. S. Baranov, O. D. Beznisko, S. N. Cherepniya, L. V. Filkov, A. A. Nafikov, A. I. Osadchii, V. G. Raevsky, L. N. Shtarkov, and E. I. Tamm, “Radiative photoproduction of pions and pion Compton scattering”, Czech. J. Phys. B 36, 948–951 (1986).

    Article  ADS  Google Scholar 

  10. J. Ahrens, V. M. Alexeev, J. R. M. Annand, H. J. Arends, R. Beck, G. Caselotti, S. N. Cherepnya, D. Drechsel, L. V. Fil’kov, K. Föhl, I. Giller, P. Grabmayr, T. Hehl, D. Hornidge, V. L. Kashevarov, M. Kotulla, D. Krambrich, B. Krusche, M. Lang, J.C. McGeorge, I. J. D. MacGregor, V. Metag, M. Moinester, R. Novotny, M. Pfeiffer, M. Rost, S. Schadmand, S. Scherer, A. Thomas, C. Unkmeir, and Th. Walcher, “Measurement of π + the γpγπ + n reaction”, Eur. Phys. J. A 23, 113–127 (2005).

    Article  ADS  Google Scholar 

  11. C. Berger et al. (PLUTO Collab.), “Pion pair production in photon–photon interactions”, Z. Phys. C 26, 199 (1984).

    ADS  Google Scholar 

  12. A. Courau, A. Falvard, J. Haïssinski, J. Jousset, B.Michel, J. C. Montret, A. Cordier, B. Delcourt, and F. Mane, “Lepton and pion pair production in collisions measured near the threshold at DCI”, Nucl. Phys. B 271, 1–20 (1986).

    Article  ADS  Google Scholar 

  13. Z. Ajaltoni et al. (DM2 Collab.), in Proc. of the VII International Workshop on Photon-Photon Collisions (Paris, 1986).

    Google Scholar 

  14. J. Boyer, F. Butler, G. Gidal, G. Abrams, D. Amidei, A. R. Baden, M. S. Gold, L. Golding, G. Goldhaber, J. Haggerty, D. Herrup, I. I. Juricic, J. A. Kadyk, M. E. Levi, M. E. Nelson, P. C. et al., “Two photon production of pion pairs”, Phys. Rev. D 42, 1350–1367 (1990).

    Article  ADS  Google Scholar 

  15. D. Babusci, S. Bellucci, G. Giordano, G. Matone, A. M. Sandorfi, and M. A. Moinester, “Chiral symmetry and pion polarizabilities”, Phys. Lett. B 277, 158–162 (1992).

    Article  ADS  Google Scholar 

  16. L. V. Fil’kov and V. L. Kashevarov, “Determination of π ± meson polarizabilities from the process”, Phys. Rev. C 73, 035210 (2006).

    Article  ADS  Google Scholar 

  17. A. E. Kaloshin and V. V. Serebryakov, “π+ and π0 and polarizabilities from γγ → ππ data on the base of S matrix approach”, Z. Phys. C 64, 689–694 (1994).

    ADS  Google Scholar 

  18. J. Gasser, M. A. Ivanov, and M. E. Sainio, “Revisiting γγ → π+π at low energies”, Nucl. Phys. B 745, 84–108 (2006).

    Article  ADS  Google Scholar 

  19. A. Guskov, “Measurement of the charged-pion polarisability at COMPASS”, in Proc. of the European Physical Society Conference on High Energy Physics (Vienna, Austria, 2015), p. 5.

    Google Scholar 

  20. C. Adolph et al. (COMPASS Collab.), “Measurement of the charged-pion polarizability”, Phys. Rev. Lett. 114, 062002 (2015).

    Article  ADS  Google Scholar 

  21. M. Bychkov, D.Pocanic, B. A. VanDevender, V. A. Baranov, W. Bertl, Yu. M. Bystritsky, E. Frlež, V. A. Kalinnikov, N. V. Khomutov, A. S. Korenchenko, S.M. Korenchenko, M. Korolija, T. Kozlowski, N. P. Kravchuk, N. A. Kuchinsky et al., “New precise measurement of the pion weak form factors in π+e +νγ decay”, Phys. Rev. Lett. 103, 051802 (2009).

    Article  ADS  Google Scholar 

  22. A. I. L’vov, “Pion polarizabilities in the sigma model with quarks”, Sov. J. Nucl. Phys. 34, 289 (1981).

    Google Scholar 

  23. M. K. Volkov and D. Ebert, “Pion polarizability in a chiral quark model”, Sov. J. Nucl. Phys. 34, 104 (1981); Phys. Lett. B 101, 252–254 (1981).

    Google Scholar 

  24. M. K. Volkov and A. A. Osipov, “Polarizability of pions and kaons in superconductor quark model”, Sov. J. Nucl. Phys. 41, 659 (1985).

    Google Scholar 

  25. M. A. Ivanov and T. Mizutani, “Pion and kaon polarizabilities in the quark confinement model”, Phys. Rev. D 45, 1580 (1992).

    Article  ADS  Google Scholar 

  26. L. V. Filkov, I. Guiasu, and E. E. Radescu, “Pion polarizabilities from backward and fixed-u sum rules”, Phys. Rev. D 26, 3146 (1982).

    Article  ADS  Google Scholar 

  27. L. V. Filkov and V. L. Kashevarov, “Determination of π± meson polarizabilities from the γγ → π+π process”, Phys. Rev. C 73, 035210 (2006).

    Article  ADS  Google Scholar 

  28. W. Detmold, B. C. Tiburzi, and A. Walker-Loud, “Extracting electric polarizabilities from lattice QCD”, Phys. Rev. D 79, 094505 (2009).

    Article  ADS  Google Scholar 

  29. M. A. Ivanov, “Pion polarizabilities: Theory vs. experiment”, Int. J. Mod. Phys. Conf. Ser. 39, 1560104 (2015).

    Article  Google Scholar 

  30. B. R. Holstein and S. Scherer, “Hadron polarizabilities”, Ann. Rev. Nucl. Part. Sci. 64, 51–81 (2014).

    Article  ADS  Google Scholar 

  31. B. Pasquini, D. Drechsel, and M. Vanderhaeghen, “Nucleon polarizabilities: Theory”, Eur. Phys. J. ST. 198, 269–285 (2011).

    Article  Google Scholar 

  32. J. Friedrich, “Chiral dynamics in pion–photon reactions”, CERN-THESIS-2012-333.

  33. A. Guskov, “The Primakoff reaction study for pion polarizability measurement at COMPASS”, Phys. Part. Nucl. Lett. 7 (3), 317–330 (2010).

    Article  Google Scholar 

  34. F. Guerrero and J. Prades, “Kaon polarizabilities in chiral perturbation theory”, Phys. Lett. B 405, 341–346 (1997).

    Article  ADS  Google Scholar 

  35. G. Backenstoss, A. Bamberger, I. Bergström, T. Bunaciu, J. Egger, R. Hagelberg, S. Hultberg, H. Koch, Y. Lynen, H. G. Ritter, A. Schwitter, and L. Tauscher, “K mass and K polarizability from kaonic atoms”, Phys. Lett. B 43, 431–436 (1973).

    Article  ADS  Google Scholar 

  36. M. V. Terentev, “Structure of observable amplitudes for photon—“soft” pion interaction”, Sov. J. Nucl. Phys. 15, 665–674 (1972).

    Google Scholar 

  37. Y. M. Antipov, V. A. Batarin, V. A. Bezzubov, N. P. Budanov, Yu. P. Gorin, Yu. A. Gornushkin, S. P.Denisov, S. V. Klimenko, I. V. Kotov, P. A. Kulinich, A. A. Lebedev, G. Mitselmakher, A. G. Olszewski, F. Palombo, A. I. Petrukhin et al., “Investigation of γ → 3π chiral anomaly during pion pair production by pions in the nuclear Coulomb field”, Phys. Rev. D 36, 21 (1987).

    Article  ADS  Google Scholar 

  38. N. Kaiser and J. M. Friedrich, “Cross sections for lowenergy πγ reactions”, Eur. Phys. J. A 36, 181 (2008).

    Article  ADS  Google Scholar 

  39. C. Adolph et al. (COMPASS Collab.), “First measurement of chiral dynamics in πγ → πππ+”, Phys. Rev. Lett. 108, 192001 (2012).

    Article  ADS  Google Scholar 

  40. K. A. Olive et al. (Particle Data Group), “Review of particle physics”, Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  41. S. L. Adler, “Axial-vector vertex in spinor electrodynamics”, Phys. Rev. 177, 2426 (1969).

    Article  ADS  Google Scholar 

  42. K. Kampf and B. Moussallam, “Chiral expansions of the lifetime”, Phys. Rev. D 79, 076005 (2009).

    Article  ADS  Google Scholar 

  43. A. M. Bernstein and B. R. Holstein, “Neutral pion lifetime measurements and the QCD chiral anomaly”, Rev. Mod. Phys. 85, 49 (2013).

    Article  ADS  Google Scholar 

  44. I. Larin et al. (PrimEx Collab.), “A new measurement of the π0 radiative decay width”, Phys. Rev. Lett. 106, 162303 (2011).

    Article  ADS  Google Scholar 

  45. H. W. Atherton, C. Bovet, P. Coet, R. Desalvo, N. Doble, R. Maleyran, E. W. Anderson, G. von Dardel, K. Kulka, M. Boratav, J. W. Cronin, and B. D. Milliken, “Direct measurement of the lifetime of the neutral pion”, Phys. Lett. B 158, 81–84 (1985).

    Article  ADS  Google Scholar 

  46. M. Gell-Mann, “A schematic model of baryons and mesons”, Phys. Lett. 8, 214–215 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  47. G. Zweig, “An model for strong interaction symmetry and its breaking”, CERN-TH-401, 1964, p. 24.

    Google Scholar 

  48. S. K. Choi et al. (Belle Collab.), “Observation of a narrow charmonium-like state in exclusive B +K +π+π J /ψ decays”, Phys. Rev. Lett. 91, 262001 (2003).

    Article  ADS  Google Scholar 

  49. H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhuet, “The hidden-charm pentaquark and tetraquark states”, Phys. Rep. 639, 1–122 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  50. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasuiet, “Exotic hadrons with heavy flavors -X, Y, Z and related states”, J-PARC-TH-0046, 2016.

    Google Scholar 

  51. X.-H. Liu, Zhao Qiang, and Frank E. Close, “Search for tetraquark candidate Z(4430) in meson photoproduction”, Phys. Rev. D 77, 094005 (2008).

    Article  ADS  Google Scholar 

  52. J. He and X. Liu, “Discovery potential for charmonium- like state Y(3940) by the meson photoproduction”, Phys. Rev. D 80, 114007 (2009).

    Article  ADS  Google Scholar 

  53. Q.-Y. Lin, X. Liu, and H.-S. Xu, “Probing charmoniumlike state X(3915) through meson photoproduction”, Phys. Rev. D 89, 034016 (2014).

    Article  ADS  Google Scholar 

  54. Q.-Y. Lin, X. Liu, and H.-S. Xu, “Charged charmoniumlike state (3900) via meson photoproduction”, Phys. Rev. D 88, 114009 (2013).

    Article  ADS  Google Scholar 

  55. X.-Y. Wang, X.-R. Chen, and A. Guskov, “Photoproduction of the charged charmoniumlike (4200)”, Phys. Rev. D 92, 094017 (2015).

    Article  ADS  Google Scholar 

  56. C. Adolph et al. (COMPASS Collab.), “Search for exclusive photoproduction of (3900) at COMPASS”, Phys. Lett. B 742, 330 (2015).

    Article  ADS  Google Scholar 

  57. O. Denisov and G. Mallot, “COMPASS status report 2016”, CERN-SPSC-2016-025, SPSC-SR-190.

  58. R. Aaij et al. (LHCb Collab.), “Observation of J p resonances consistent with pentaquark states in p decays”, Phys. Rev. Lett. 115, 072001 (2015).

    Article  ADS  Google Scholar 

  59. R. Aaij et al. (LHCb Collab.), “Evidence for exotic hadron contributions to decays”, Phys. Rev. Lett. 117, 082003 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  60. Q. Wang, X.-H. Liu, and Q. Zhao, “Photoproduction of hidden charm pentaquark states (4380) and (4450)”, Phys. Rev. D 92, 034022 (2015).

    Article  ADS  Google Scholar 

  61. M. Karliner and J. L. Rosner, “Photoproduction of exotic baryon resonances”, Phys. Lett. B 752, 329–332 (2016).

    Article  ADS  Google Scholar 

  62. Y. Huang, J. He, X. Liu, H. F. Zhang, J. J. Xie, and X. R. Chen, “Pion-induced production of the (3900) off a nuclear target”, Phys. Rev. D 93, 034022 (2016).

    Article  ADS  Google Scholar 

  63. M. Arneodo, “Nuclear effects in structure functions”, Phys. Rep. 240, 301–393 (1994).

    Article  ADS  Google Scholar 

  64. D. Geesaman, K. Saito, and A. W. Thomas, “The nuclear EMC effect”, Annu. Rev. Nucl. Part. Sci. 45, 337–390 (1995).

    Article  ADS  Google Scholar 

  65. P. R. Norton, “The EMC effect”, Rep. Prog. Phys. 66, 1253–1297 (2006).

    Article  ADS  Google Scholar 

  66. S. Malace, D. Gaskell, D. W. Higinbotham, and I. Cloet, “The Challenge of the EMC effect: Existing data and future directions”, Int. J. Mod. Phys. E 23, 1430013 (2014).

    Article  ADS  Google Scholar 

  67. K. Rith, “Present status of the EMC effect”, arXiv:1402.5000v1 [hep-ex] (2014).

  68. I. C. Cloet, W. Bentz, and A. W. Thomas, “Isovector EMC effect explains the NuTeV anomaly”, Phys. Rev. Lett. 102, 252301 (2009).

    Article  ADS  Google Scholar 

  69. P. L. McGaughey, J. M. Moss, and J. C. Peng, “Highenergy hadron-induced dilepton production from nucleons and nuclei”, Annu. Rev. Nucl. Part. Sci. 49, 217 (1999).

    Article  ADS  Google Scholar 

  70. M. A. Vasiliev et al. (FNAL E866/NuSea Collab.), “Parton energy loss limits and shadowing in Drell–Yan dimuon production”, Phys. Rev. Lett. 83, 2304–2307 (1999).

    Article  ADS  Google Scholar 

  71. R. G. Arnold et al. (SLAC-E139 Collab.), “Measurements of the A-dependence of deep inelastic electron scattering from nuclei”, Phys. Rev. Lett. 52, 727 (1984).

    Article  ADS  Google Scholar 

  72. J. Gomez et al. (SLAC-E139 Collab.), “Measurement of the A dependence of deep-inelastic electron scattering”, Phys. Rev. D 49, 4348 (1994).

    Article  ADS  Google Scholar 

  73. S. Dasu et al. (SLAC-E140 Collab.), “Measurement of the difference in R = l/ t and in deep inelastic eD, e Fe and e Au scattering”, Phys. Rev. Lett. 60, 2591 (1988).

    Article  ADS  Google Scholar 

  74. S. Dasu et al. (SLAC-E140 Collab.), “Measurement of kinematic and nuclear dependence of R = / in deep inelastic electron scattering”, Phys. Rev. D 49, 5641–5670 (1994).

    Article  ADS  Google Scholar 

  75. J. J. Aubert et al. (EMC Collab.), “The ratio of the nucleon structure functions for iron and deuterium”, Phys. Lett. B 123, 275–278 (1983).

    Article  ADS  Google Scholar 

  76. J. J. Aubert et al. (EMC Collab.), “Measurements of the nucleon structure functions in deep inelastic muon scattering from deuterium and comparison with those from hydrogen and iron”, Nucl. Phys. B 293, 740–786 (1987).

    Article  ADS  Google Scholar 

  77. J. Ashman et al. (EMC Collab.), “Measurement of the ratios of deep inelastic muon-nucleus cross sections on various nuclei compared to deuterium”, Phys. Lett. B 202, 603–610 (1988).

    Article  ADS  Google Scholar 

  78. G. Bari et al. (BCDMS Collab.), “A measurement of nuclear effects in deep inelastic muon scattering on deuterium, nitrogen and iron targets”, Phys. Lett. B 163, 282 (1985).

    Article  ADS  Google Scholar 

  79. A. C. Benvenuti et al. (BCDMS Collab.), “Nuclear effects in deep inelastic muon scattering on deuterium and iron targets”, Phys. Lett. B 189, 483 (1987).

    Article  ADS  Google Scholar 

  80. P. Amaudruz et al. (NMC Collab.), “Precision measurement of the structure function ratios F2 (He)/F2 (D), F2 (C)/F2 (D) and F2 (Ca)/F2 (D)”, Z. Phys. C 51, 387–394 (1991).

    Article  Google Scholar 

  81. P. Amaudruz et al. (NMC Collab.), “Precision measurement of structure function ratios for Li-6, C-12 and Ca-40”, Z. Phys. C 53, 73–78 (1992).

    Article  ADS  Google Scholar 

  82. P. Amaudruz et al. (NMC Collab.), “Measurements of and in deep inelastic muon scattering”, Phys. Lett. B 294, 120–126 (1992).

    Article  ADS  Google Scholar 

  83. P. Amaudruz et al. (NMC Collab.), “A re-evaluation of the nuclear structure function ratios for D, He, 6Li, C and Ca”, Nucl. Phys. B 441, 3–11 (1995).

    Article  ADS  Google Scholar 

  84. M. Arneodo et al. (NMC Collab.), “The structure function ratios and at small x”, Nucl. Phys. B 441, 12–30 (1995).

    Article  ADS  Google Scholar 

  85. M. Arneodo et al. (NMC Collab.), “The A dependence of the nuclear structure function ratios”, Nucl. Phys. B 481, 3–22 (1996).

    ADS  Google Scholar 

  86. M. Arneodo et al. (NMC Collab.), “The dependence of the structure function ratio and the difference deep inelastic muon scattering”, Nucl. Phys. B 481, 23–29 (1996).

    ADS  Google Scholar 

  87. D. M. Alde et al. (FNAL-E772 Collab.), “Nuclear dependence of dimuon production at 800-GeV. FNAL-772 experiment”, Phys. Rev. Lett. 64, 2479–2482 (1990).

    Article  ADS  Google Scholar 

  88. M. A. Vasiliev et al. (FNAL-E866 Collab.), “Parton energy loss limits and shadowing in Drell–Yan dimuon production”, Phys. Rev. Lett. 83, 2304–2307 (1999).

    Article  ADS  Google Scholar 

  89. M. R. Adams et al. (FNAL-E665 Collab.), “Saturation of shadowing at very low”, Phys. Rev. Lett. 68, 3266–3269 (1992).

    Article  ADS  Google Scholar 

  90. M. R. Adams et al. (FNAL-E665 Collab.), “Shadowing in inelastic scattering of muons on carbon, calcium and lead at low”, Z. Phys. C 67, 403–410 (1995).

    Article  ADS  Google Scholar 

  91. A. Airapetian et al. (HERMES Collab.), “Nuclear effects on R = / in deep inelastic scattering”, Phys. Lett. B 567, 339–346 (2003).

    Article  ADS  Google Scholar 

  92. J. Seely et al. (JLAB-E03103 Collab.), “New measurements of the EMC effect in very light nuclei”, Phys. Rev. Lett. 103, 202301 (2009).

    Article  ADS  Google Scholar 

  93. J. Badier et al. (NA3 Collab.), “Test of nuclear effects in hadronic dimuon production”, Phys. Lett. B 104, 335–338 (1981).

    Article  ADS  Google Scholar 

  94. P. Bordalo et al. (NA10 Collab.), “Nuclear effects on the nucleon structure functions in hadronic high-mass dimuon production”, Phys. Lett. B 193, 368–372 (1987).

    Article  ADS  Google Scholar 

  95. D. Dutta, J.-C. Peng, I. C. Cloet, and D. Gaskell, “Pion-induced Drell–Yan processes and the flavordependent EMC effect”, Phys. Rev. C 83, 042201 (2011).

    Article  ADS  Google Scholar 

  96. J. Z. Bai et al. (BES Collab.), “Observation of a near threshold enhancement in the p mass spectrum from radiative J/ decays”, Phys. Rev. Lett. 91, 022001 (2003).

    Article  ADS  Google Scholar 

  97. M. Ablikim et al. (BES Collab.), “Study of J/ decaying into”, Eur. Phys. J. C 53, 15 (2008).

    Article  ADS  Google Scholar 

  98. M. Ablikim et al. (BES Collab.), “Measurement of radiative decays”, Phys. Rev. Lett. 99, 011802 (2007).

    Article  ADS  Google Scholar 

  99. M. Ablikim et al. (BESIII Collab.), “Observation of a mass threshold enhancement in decay”, Chin. Phys. C 34, 4 (2010).

    Google Scholar 

  100. J. P. Alexander et al. (CLEO Collab.), “Study of decays to, and and search for threshold enhancements”, Phys. Rev. D 82, 092002 (2010).

    Article  ADS  Google Scholar 

  101. M. Ablikim et al. (BESIII Collab.), “Spin-parity analysis of mass threshold structure in and radiative decays”, Phys. Rev. Lett. 108, 112003 (2012).

    Article  ADS  Google Scholar 

  102. M. Ablikim et al. (BESIII Collab.), “Confirmation of the and observation of the resonances and in”, Phys. Rev. Lett. 106, 072002 (2011).

    Article  ADS  Google Scholar 

  103. M. Ablikim et al. (BESIII Collab.), “Observation of an anomalous line shape of the mass spectrum near the mass threshold in”, Phys. Rev. Lett. 117, 042002 (2016).

    Article  ADS  Google Scholar 

  104. M. Ablikim et al. (BESIII Collab.), “Observation and spin-parity determination of the X(1835) in”, Phys. Rev. Lett. 115 (9), 091803 (2015).

    Article  ADS  Google Scholar 

  105. J. J. Manak et al. (E852 Collab.), “Partial-wave analysis of the system produced in the reaction at 18-GeV/c”, Phys. Rev. D 62, 012003 (2000).

    Article  ADS  Google Scholar 

  106. D. Barberis et al. (WA102 Collab.), “A study of the channel produced in central pp interactions at 450-GeV/c”, Phys. Lett. B 471, 435–439 (2000).

    Article  Google Scholar 

  107. A. Kumar, K. Ranjan, M. K. Jha, A. Bhardwaj, B. M. Sodermark, and R. K. Shivpuri, “Study of parton smearing effects in direct photon production at the Fermilab Tevatron”, Phys. Rev. D 68, 014017 (2003).

    Article  ADS  Google Scholar 

  108. R. M. Baltrusaitis, M. E. Binkley, B. Cox, T. Kondo, C. T. Murphy, W. Yang, L. Ettlinger, M. S. Goodman, J. A. J. Matthews, and J. Nagy, “A search for direct photon production in 200 and 300 GeV/c protonberyllium interactions”, Phys. Lett. B 88, 372–378 (1979).

    Article  ADS  Google Scholar 

  109. M. McLaughlin et al. (FNAL E629 Collab.), “Inclusive production of direct photons in 200-GeV/c collisions”, Phys. Rev. Lett. 51, 971 (1983).

    Article  ADS  Google Scholar 

  110. J. Badier et al. (NA3 Collab.), “Direct photon production from pions and protons at 200-GeV/c”, Z. Phys. C 31, 341 (1986).

    Article  ADS  Google Scholar 

  111. C. De Marzo et al. (NA24 Collab.), “Measurement of direct photon production at large transverse momentum in p, p, and pp collisions at 300 GeV/c”, Phys. Rev. D 36, 8 (1987).

    Article  ADS  Google Scholar 

  112. M. Bonesini et al. (WA70 Collab.), “Production of high transverse momentum prompt photons and neutral pions in proton proton interactions at 280-GeV/c”, Z. Phys. C 38, 371 (1988).

    Article  ADS  Google Scholar 

  113. M. Bonesini et al. (WA70 Collab.), “High transverse momentum prompt photon production by and on protons at 280-GeV/c”, Z. Phys. C 37, 535 (1988).

    Article  ADS  Google Scholar 

  114. D. L. Adams et al. (FNAL E704 Collab.), “Measurement of single spin asymmetry for direct photon production in pp collisions at 200-GeV/c”, Phys. Lett. B 345, 569–75 (1995).

    Article  ADS  Google Scholar 

  115. G. Alverson et al. (FNAL E706 Collab.), “Production of direct photons and neutral mesons at large transverse momenta by and p beams at 500 GeV/c”, Phys. Rev D 48, 5 (1993).

    Article  ADS  Google Scholar 

  116. G. Ballocchi et al. (UA6 Collab.), “Determination of and the gluon distribution using direct photon production in pp and pp collisions”, Phys. Lett. B 317, 250–256 (1993).

    Article  ADS  Google Scholar 

  117. G. Ballocchi et al. (UA6 Collab.), “Direct photon cross sections in proton-proton and antiproton-proton interactions at GeV”, Phys. Lett. B 436, 222–230 (1998).

    Article  ADS  Google Scholar 

  118. E. Annassontzis, A. Karabarbounis, C. Kourkoumelis, L. K. Resvanis, R. B. Palmer, D. C. Rahm, P. Rehak, I. Stumer, C. W. Fabjan, D. Lissauer, I. Mannelli, W. Molzon, P. Mouzourakis, A. Nappi, and W. Willis, “High p(t) direct photon production in pp collisions”, Z. Phys. C 13, 277–289 (1982).

    Article  ADS  Google Scholar 

  119. A. L. S. Angelis et al. (CERN-Michigan State-Oxford-Rockefeller Collab.), “Direct photon production at the CERN ISR”, Nucl. Phys. B 327, 541–568 (1989).

    Article  ADS  Google Scholar 

  120. T. Akesson et al. (Axial Field Spectrometer Collab.), “High and production, inclusive and with a recoil hadronic jet, in pp collisions at = 63 GeV”, Sov. J. Nucl. Phys. 51, 836–845 (1990).

    Google Scholar 

  121. J. Huston et al. (CTEQ Collab.), “Study of the uncertainty of the gluon distribution”, Phys. Rev. D 58, 114034 (1998).

    Article  ADS  Google Scholar 

  122. P. Aurenche, M. Fontannaz, J. Ph. Guillet, B. Kniehl, E. Pilon, and M. Werlen, “A critical phenomenological study of inclusive photon production in hadronic collisions”, Eur. Phys. J. C 9, 107–119 (1999).

    Article  ADS  Google Scholar 

  123. P. Aurenche, M. Fontannaz, J.-P. Guillet, E. Pilon, and M. Werlen, “A new critical study of photon production in hadronic collisions”, Phys. Rev. D 73, 094007 (2006).

    Article  ADS  Google Scholar 

  124. L. Apanasevich et al. (FNAL E706 Collab.), “Evidence for parton effects in high-particle production”, Phys. Rev. Lett. 81, 2642 (1998).

    Article  ADS  Google Scholar 

  125. E. Laenen, G. Sterman, and W. Vogelsang, “Higherorder QCD corrections in prompt photon production”, Phys. Rev. Lett. 84, 4296 (2000).

    Article  ADS  Google Scholar 

  126. S. Gupta and K. Sridhar, “Direct photon production and the gluon EMC effect”, Phys. Lett. B 197, 259–262 (1987).

    Article  ADS  Google Scholar 

  127. F. Arleo and T. Gousset, “Measuring gluon shadowing with prompt photons at RHIC and LHC”, Phys. Lett. B 660, 181–187 (2008).

    Article  ADS  Google Scholar 

  128. J. Badier et al. (NA3 Collab.), “Direct photon pair production from pions and protons at 200 GeV/c”, Phys. Lett. B 164, 184–188 (1985).

    Article  ADS  Google Scholar 

  129. E. Bonvin et al. (WA70 Collab.), “Double prompt photon production at high transverse momentum by on protons at 280-GeV/c”, Z. Phys. C 41, 591 (1989).

    Article  Google Scholar 

  130. C. De Marzo et al. (NA24 Collab.), “Measurement of the production of high-mass, and pairs in p, p, and pp collisions at 300 GeV/c”, Phys. Rev. D 42, 748 (1990).

    Article  ADS  Google Scholar 

  131. W. Vogelsang and M. R. Whalley, “A compilation of data on single and double prompt photon production in hadron–hadron interactions”, J. Phys. G. Nucl. Part. Phys. V 23, 1 (1997).

    Article  ADS  Google Scholar 

  132. N. Anfimov, V. Anosov, J. Barth, V. Chalyshev, I. Chirikov-Zorin, M. Dziewiecki, D. Elsner, V. Frolov, F. Frommberger, A. Guskov, W. Hillert, F. Klein, Z. Krumshteyn, R. Kurjata, J. Marzec et al., “Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at ELSA”, Phys. Part. Nucl. Lett. 12 (4), 566–569 (2015).

    Article  Google Scholar 

  133. C. Albajar et al. (UA1 Collab.), “Low mass dimuon production at the CERN proton–antiproton collider”, Phys. Lett. B 209, 397–406 (1988).

    Article  ADS  Google Scholar 

  134. E. L. Berger, L. E. Gordon, and M. Klasen, “Massive lepton pairs as a prompt photon surrogate”, Phys. Rev. D 58, 074012 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guskov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisenko, I., Guskov, A. & Mitrofanov, E. Hadron structure and spectroscopy at COMPASS. Overview of certain tasks. Phys. Part. Nuclei 48, 635–658 (2017). https://doi.org/10.1134/S1063779617040037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617040037

Navigation