Skip to main content
Log in

Forward jet production & quantum corrections to the gluon Regge trajectory from Lipatov’s high energy effective action

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review Lipatov’s high energy effective action and show that it is a useful computational tool to calculate scattering amplitudes in (quasi)-multi-Regge kinematics. We explain in some detail our recent work where a novel regularization and subtraction procedure has been proposed that allows to extend the use of this effective action beyond tree level. Two examples are calculated at next-to-leading order: forward jet vertices and the gluon Regge trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Lipatov, “Reggeization of the vector meson and the vacuum singularity in Nonabelian Gauge Theories,” Sov. J. Nucl. Phys. 23, 338 (1976); E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, “On the Pomeranchuk singularity in asymptotically free theories,” Phys. Lett. B 60, 50 (1975); “Multi-Reggeon processes in the Yang-Mills theory,” Sov. Phys. JETP 44, 443 (1976); “The Pomeranchuk singularity in nonabelian gauge theories,” Sov. Phys. JETP. 45, 199 (1977); Ia. Ia. Balitsky and L. N. Lipatov, “The Pomeranchuk singularity in quantum chromodynamics,” Sov. J. Nucl. Phys. 28, 822 (1978).

    Google Scholar 

  2. V. S. Fadin and L. N. Lipatov, “BFKL Pomeron in the nex-to-leading approximation,” Phys. Lett. B 429, 127 (1998) [hep-ph/9802290]; M. Ciafaloni and G. Camici, “Energy scale(s) and next-to-leading BFKL equation,” Phys. Lett. B 430, 349 (1998) [hep-ph/9803389].

    Article  ADS  Google Scholar 

  3. M. Déak, F. Hautmann, H. Jung, and K. Kutak, “Forward jet production at the large hadron collider,” JHEP 0909, 121 (2009), arXiv:0908.0538 [hep-ph]; “Forward-central jet correlations at the large Hadron collider,” arXiv:1012.6037 [hep-ph]; “Forward jets and energy flow in Hadronic collisions,” Eur. Phys. J. C 72, 1982 (2012), arXiv:1112.6354 [hep-ph]; G. Chachamis, M. Hentschinski, A. Sabio Vera, and C. Salas, “Exclusive central production of heavy quarks at the LHC,” arXiv:0911.2662 [hep-ph]; D. Colferai, F. Schwennsen, L. Szymanowski, and S. Wallon, “Mueller Navelet jets at LHC-complete NLL BFKL calculation,” JHEP 1012, 026 (2010), arXiv:1002.1365 [hep-ph]; M. Angioni, G. Chachamis, J. D. Madrigal, and A. Sabio Vera, “Dijet production at large rapidity separation in N=4 SYM,” Phys. Rev. Lett. 107, 191601 (2011), arXiv:1106.6172 [hep-th]; F. Hautmann, M. Hentschinski, and H. Jung, “TMD PDFs: A Monte Carlo implementation for the sea quark distribution,” Nucl. Phys. B 865, 54 (2012), arXiv:1205.1759 [hep-ph]; “Forward Z-boson production and the unintegrated sea quark distribution,” arXiv:1205.6358 [hep-ph]; M. Hentschinski, A. Sabio Vera, and C. Salas, “The hard to soft Pomeron transition in small x DIS data using optimal renormalization,” Phys. Rev. Lett. 110, 041601 (2013), arXiv:1209.1353 [hep-ph]; A. van Hameren, P. Kotko, and K. Kutak, “Helicity amplitudes for high-energy scattering,” JHEP 1301, 078 (2013), arXiv:1211.0961 [hep-ph].

    Article  ADS  Google Scholar 

  4. L. N. Lipatov, “Gauge invariant effective action for high-energy processes in QCD,” Nucl. Phys. B 452, 369 (1995) [hep-ph/9502308]; “Small x physics in perturbative QCD,” Phys. Rept. 286, 131 (1997) [hep-ph/9610276].

    Article  ADS  Google Scholar 

  5. E. N. Antonov, L. N. Lipatov, E. A. Kuraev, and I. O. Cherednikov, “Feynman rules for effective Regge action,” Nucl. Phys. B 721, 111 (2005) [hep-ph/0411185].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. M. Hentschinski, “Unitarity corrections from the high energy QCD effective action,” Acta Phys. Polon. B 39, 2567 (2008), arXiv:0808.3082 [hep-ph]; “The high energy behavior of QCD: The effective action and the triple Pomeron vertex,” arXiv:0908.2576 [hep-ph]; “The effective action and the triple Pomeron vertex,” Nucl. Phys. Proc. Suppl. 198, 108 (2010), arXiv:0910.2981 [hep-ph]; M. Hentschinski, J. Bartels, and L. N. Lipatov, “Longitudinal loop integrals in the gauge invariant effective action for high energy QCD,” arXiv:0809.4146 [hep-ph].

    ADS  Google Scholar 

  7. M. A. Braun, M. Y. Salykin, S. S. Pozdnyakov, and M. I. Vyazovsky, “Production of a gluon with the exchange of three reggeized gluons in the Lipatov effective action approach,” Eur. Phys. J. C 72, 2223 (2012), arXiv:1209.2490 [hep-ph]; M. A. Braun, L. N. Lipatov, M. Y. Salykin, and M. I. Vyazovsky, “Gluon production on two centers and the effective action approach,” Eur. Phys. J. C 71, 1639 (2011), arXiv:1103.3618 [hep-ph]; M. A. Braun and M. I. Vyazovsky, “The Reggeon → 2 Reggeons + particle vertex in the Lipatov effective action formalism,” Eur. Phys. J. C 51, 103 (2007) [hep-ph/0612323].

    Article  ADS  Google Scholar 

  8. G. Chachamis, M. Hentschinski, J. D. Madrigal, and A. Sabio Vera, “Quark contribution to the gluon Regge trajectory at NLO from the high energy effective action,” Nucl. Phys. B 861, 133 (2012), arXiv:1202.0649 [hep-ph].

    Article  ADS  MATH  Google Scholar 

  9. M. Hentschinski and A. Sabio Vera, “NLO jet vertex from Lipatov’s QCD effective action,” Phys. Rev. D 85, 056006 (2012), arXiv:1110.6741 [hep-ph].

    Article  ADS  Google Scholar 

  10. V. N. Gribov, The Theory of Complex Angular Momenta: Gribov Lectures on Theoretical Physics (Cambridge University Press, Cambridge, UK, 2003).

    Book  Google Scholar 

  11. H. Weigert, “Evolution at small x (bj): The color glass condensate,” Prog. Part. Nucl. Phys. 55, 461 (2005) [hep-ph/0501087].

    Article  ADS  MathSciNet  Google Scholar 

  12. Ia. Ia. Balitsky, “Operator expansion for high-energy scattering,” Nucl. Phys. B 463, 99 (1996) [hep-ph/9509348].

    Article  ADS  Google Scholar 

  13. A. van Hameren, P. Kotko, and K. Kutak, “Multigluon helicity amplitudes with one off-shell leg within high energy factorization,” JHEP 1212, 029 (2012), arXiv:1207.3332 [hep-ph].

    Article  Google Scholar 

  14. M. Ciafaloni and D. Colferai, “K factorization and impact factors at next-to-leading level,” Nucl. Phys. B 538, 187 (1999) [hep-ph/9806350].

    Article  ADS  Google Scholar 

  15. M. Hentschinski, “Pole prescription of higher order induced vertices in Lipatov’s QCD effective action,” Nucl. Phys. B 859, 129 (2012), arXiv:1112.4509 [hep-ph].

    Article  ADS  MATH  Google Scholar 

  16. V. S. Fadin, R. Fiore, and A. Quartarolo, “Radiative corrections to quark quark reggeon vertex in QCD,” Phys. Rev. D 50, 2265 (1994) [hep-ph/9310252].

    Article  ADS  Google Scholar 

  17. V. Del Duca and C. R. Schmidt, “Virtual next-to-leading corrections to the impact factors in the high-energy limit,” Phys. Rev. D 57, 4069 (1998) [hep-ph/9711309].

    Article  ADS  Google Scholar 

  18. V. S. Fadin, R. Fiore, and M. I. Kotsky, “Gluon Regge trajectory in the two loop approximation,” Phys. Lett. B 387, 593 (1996) [hep-ph/9605357].

    Article  ADS  Google Scholar 

  19. G. Chachamis, M. Hentschinski, J. D. Madrigal, and A. Sabio Vera, “Gluon Regge trajectory at two loops from Lipatov’s high energy effective action,” Nucl. Phys. B 876, 453 (2013), arXiv: 1307.2591 [hep-ph]; “Computing the full two-loop gluon Regge trajectory within Lipatov’s high energy effective action,” arXiv:1308.0293 [hep-ph].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chachamis.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chachamis, G., Hentschinski, M., Madrigal Martínez, J.D. et al. Forward jet production & quantum corrections to the gluon Regge trajectory from Lipatov’s high energy effective action. Phys. Part. Nuclei 45, 788–799 (2014). https://doi.org/10.1134/S1063779614040030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779614040030

Keywords

Navigation