Skip to main content
Log in

Special features of detectors, electronics, and trigger system of the ALICE setup

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Special features and parameters of detectors, front-end electronics, and trigger electronics of the ALICE setup, which is intended for investigations of ultrarelativistic nucleon-nucleon collisions at the LHC and for studies of heavy ion collisions, starting from protons to several types of ions, which have 5.5 TeV/nucleon energy in the center of mass, are described. One of the first collisions of lead ions was recorded by the ALICE detector on November 8, 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALICE, Technical Proposal, CERN/LHCC 95-71.

  2. ALICE, CERN/LHCC 99-12, ALICE TDR 4 (1999), p. 3.

  3. P. Giubelino, “The ALICE Detector at LHC,” Nucl. Instrum. Methods Phys. Res. A 344, 27–38 (1994).

    Article  ADS  Google Scholar 

  4. Internet Google, Key Word ALICE Experiment.

  5. P. Glassel et al., “One of the First Cosmic-Ray Events Recorded and Reconstructed in the Sector of TPC,” CERN Weekly Bull., No. 28 (10th July, 2006).

  6. F. Meddi, “The ALICE Silicon Pixel Detector,” Nucl. Instrum. Methods Phys. Res. A 465, 40–45 (2001).

    Article  ADS  Google Scholar 

  7. P. Kuijer, “The Inner Tracking System of ALICE Experiment,” Nucl. Instrum. Methods Phys. Res. A 530, 28–32 (2004).

    Article  ADS  Google Scholar 

  8. V. Manzari, “Construction of the ALICE Silicon Pixel Detector and Prototype Performance in Test Beam,” Nucl. Instrum. Methods Phys. Res. A 500, 61–66 (2006).

    Article  ADS  Google Scholar 

  9. P. Riedler et al., “Production and Integration of ALICE Silicon Pixel Detector,” Nucl. Instrum. Methods Phys. Res. A 572, 128–131 (2007).

    Article  ADS  Google Scholar 

  10. R. Dinapoli et al., “The ALICE Pixel Detector Readout System — Moving Towards System Integration,” in Proceedings of the 8th Workshop on Electronics for LHC Experiments, Colmar, France, Sept. 9–13, 2002, CERN-LHCC-2002-34, pp. 164–169.

  11. A. Kluge, “The ALICE on Detector Pixel PILOT System — OPS,” in Proceedings of the 7th Workshop on Electronics for LHC Experiments, Stockholm, Sept. 10–14, 2001, CERN-LHCC/2001-034, pp. 95–100

  12. A. Kluge, “The Alice Silicon Pixel Detector,” Nucl. Instrum. Methods Phys. Res. A 582, 728–732 (2007).

    Article  ADS  Google Scholar 

  13. F. Antinori et al., “The Alice Pixel Detector Readout Chip Test System,” in Proceedings of the 8th Workshop on Electronics for LHC Experiments, Colmar, France, Sept. 9–13, 2002, CERN-LHCC-2002-34, pp. 77–86.

  14. J. Conrad et al., “Beam Test Performance and Simulation of Prototype for ALICE Silicon Pixel Detector,” Nucl. Instrum. Methods Phys. Res. A 573, 1–3 (2007).

    Article  ADS  Google Scholar 

  15. R. Dinapoli et al., “Electronics for Pixel Detector. An Analog Front-End in Standard 0.25 μm for Silicon Pixel Detectors in ALICE and LHCb,” in Proceedings of the 6th Workshop on Electronics for LHC Experiments, Cracow, Poland, 2000, CERN/LHCC/2000-041.

  16. W. Snoeys et al., “Pixel Readout Electronics Development for the ALICE Pixel Vertex and LHCb RICH Detector,” Nucl. Instrum. Methods Phys. Res. A 465, 176–189 (2001).

    Article  ADS  Google Scholar 

  17. R. Dinapoli et al., “An Analog Front-End in Standard 0.25 μm CMOS for Silicon Pixel Detectors in ALICE and LHCb,” in Proceedings of the 6th Workshop on Electronics for LHC Experiments, Cracow, Poland, 2000, CERN/LHCC/2000-041, pp. 110–114.

  18. F. Antinori et al., “The ALICE Silicon Detector Readout System,” in Proceedings of the 6th Workshop on Electronics for LHC Experiments, Cracow, Poland, 11–15 Sept. 2000, CERN/LHCC/2000-041, pp. 105–109.

  19. S. Antinori et al., “Design, Realization and Test of DAQ Chain for ALICE ITS Experiment,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN-LHCC-2003-055, pp. 195–199.

  20. A. Badala et al., “Vertex Finding in ALICE by Use of Silicon Pixel Layers in the INNER Tracking System,” Nucl. Instrum. Methods Phys. Res. A 485, 100–104 (2002).

    Article  ADS  Google Scholar 

  21. JITAG, IEEE std. 1149.a (1993).

  22. P. Kuijer, “The ALICE Silicon Strip Detector System,” Nucl. Instrum. Methods Phys. Res. A 447, 251–256 (2000).

    Article  ADS  Google Scholar 

  23. I. Radshevskaya et al., “Qualification of a Large Number Double-Sided Silicon Microstrip Sensors ALICE Inner Tracking System,” Nucl. Instrum. Methods Phys. Res. A 572, 121–124 (2007).

    ADS  Google Scholar 

  24. I. Radshevskaya et al., “Test and Quality Control of Double-Sided Silicon Microstrip Sensors for ALICE Inner Tracking System,” Nucl. Instrum. Methods Phys. Res. A 530, 122–124 (2004).

    Article  Google Scholar 

  25. M. J. Rossewij et al., “EFRROM the ALICE SSD Readout System,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN-LHCC-2003-055, pp. 59–64.

  26. L. Hebrard et al., “ALICE128C: A CMOS Full Custom ASIC for Readout of Silicon Strip Detectors in the ALICE Experiment,” in Proceedings of the 3rd Workshop on Electronics for LHC Experiments, London, Sept. 22–26, 1997, CERN/LHCC/97-60, pp. 173–177.

  27. M. Bregant et al., “Assembly and Validation of SSD Silicon Microstrip Detector of ALICE,” Nucl. Instrum. Methods Phys. Res. A 566, 18–21 (2006).

    Article  ADS  Google Scholar 

  28. M. Germain, “Irradiation of Silicon-Strip Detector for the ALICE Experiment at LHC,” Nucl. Instrum. Methods Phys. Res. A 482, 634–643 (2002).

    Article  ADS  Google Scholar 

  29. J. R. Lutz et al., “Detector and Front-End Electronics for ALICE and Star Silicon Strip Layers,” in Proceedings of the 4th Workshop on Electronics for LHC Experiments. Rome, 1998, CERN/LHCC/98-36, pp. 170–174.

  30. J. R. Lutz et al., “Front-End Modules for ALICE SSD,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN-LHCC-2003-055, pp. 170–174.

  31. P. Gregori et al., “Production of ALICE Microstrip Detectors at ITC-Irst,” Nucl. Instrum. Methods Phys. Res. A 572, 70–72 (2007).

    Article  ADS  Google Scholar 

  32. P. Hy-Guo et al., “Test and Evolution of HAL25: The ALICE SSD Front-End Chip,” in Proceedings of the 8th Workshop on Electronics for LHC Experiments, Colmar, France, Sept. 2002, CERN/HCC/2002-34, pp. 135–138.

  33. A. P. Has et al., “Very Low Mass Microcables for the ALICE Silicon Strip Detector,” in Proceedings of the 5th Workshop on Electronics for LHC Experiments, Snowmass, Colorado, Sept. 20–24, 1999, CERN/LHCC/99-09, pp. 47–51.

  34. R. Kluit et al., “Design of Ladder End-Cap Electronics for the ALICE ITS SSD,” in Proceedings of the 7th Workshop on Electronics for LHC Experiments, Stockholm, Sept. 10-14, 2001, CERN/LHCC/2011-034, pp. 47–51.

  35. D. Svoboda, “The Detector Control for ALICE,” in Proceedings of the 5th Workshop on Electronics for LHC Experiments, Snowmass, Colorado, Sept. 20-24, 1999, CERN/LHCC/99-33, pp. 371–376.

  36. G. Dumont et al., “Water Electronics,” in Proceedings of the 3rd Workshop on Electronics for LHC Experiments, London, Sept. 22–26, 1997, CERN/LHCC/97-60, pp. 535–539.

  37. R. Stanek et al., “Cooling of Electronics in Collider Experiments,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN-LHCC-2003-055, pp. 44–48.

  38. E. Gatti et al., “Semiconductor Drift Detector,” Nucl. Instrum. Methods Phys. Res. 225, 608–614 (1984).

    Article  ADS  Google Scholar 

  39. P. Rehak et al., “Semiconductor Drift Chambers for Position and Energy Measurements,” Nucl. Instrum. Methods Phys. Res. A 235, 224–234 (1985).

    Article  ADS  Google Scholar 

  40. E. Gatti et al., “Review of Semiconductor Drift Detectors,” Nucl. Instrum. Methods Phys. Res. A 541, 47–60 (2005).

    Article  ADS  Google Scholar 

  41. C. Petta et al., “Spatial and Charge Resolution in Fuzzy Processing of SSDs Signals,” in Proceedings of the 3rd Workshop on Electronics for LHC Experiments, London, Sept. 22–26, 1997, CERN/LHCC/97-60, pp. 526–530.

  42. C. Piemonte et al., “Electric Performance of the ALICE Silicon Drift Detector Irradiated with 1 GeV Electrons,” Nucl. Instrum. Methods Phys. Res. A 485, 133–139 (2002).

    Article  ADS  Google Scholar 

  43. A. Rashevsky et al., “Large Area Silicon Drift Detector for the ALICE Experiment,” Nucl. Instrum. Methods Phys. Res. A 485, 54–60 (2002).

    Article  ADS  Google Scholar 

  44. A. Radshevsky et al., “Charge Injectors of ALICE Silicon Drift Detector,” Nucl. Instrum. Methods Phys. Res. A 572, 125–127 (2007).

    Article  ADS  Google Scholar 

  45. G. Alberici et al., “The Silicon Drift Detector Readout Scheme for Inner Tracking System of the ALICE Experiment,” in Proceedings of the 4th Workshop on Electronics for LHC Experiments, Rome, Sept. 21–25, 1998, CERN/LHCC/98-36, pp. 151–154.

  46. G. Mazza et al., “Recent Developments of the Silicon Drift Detector Readout Scheme for ALICE Inner Tracking System,” in Proceedings of the 5th Workshop on Electronics for LHC Experiments, Snowmass, Colorado, Sept. 20–24, 1999, CERN/LHCC/99-33, pp. 138–142.

  47. G. Mazza et al., “Test Results of Front-End for the Silicon Drift Detector of ALICE,” in Proceedings of the 7th Workshop on Electronics for LHC Experiments, Stockholm, Sept. 10–14, 2001, CERH/LHCC/2001034, pp. 81–84.

  48. G. Mazza et al., “Test Results of the ALICE SDD Electronic Readout Prototypes,” in Proceedings of the 6th Workshop on Electronics for LHC Experiments, Cracow, Poland, Sept. 11–15, 2000, CERN/LHCC/2000-041, pp. 147–151.

  49. A. Rivetti et al., “Test Results of the Front-End System Prototype of the Silicon Drift Detectors of ALICE,” Nucl. Instrum. Methods Phys. Res. A 485, 188–192 (2002).

    Article  ADS  Google Scholar 

  50. S. Antinori et al., “Design and Test of Final ALICE SDD CARLOS End Ladder Board,” in Proceedings of the 12th Workshop on Electronics for LHC Experiments, Valencia, Spain, Sept. 25–29, 2006, CENR/LHCC/2007-006, pp. 206–209.

  51. S. Antinori et al., “Test of the END-Lader Prototype Board of the ALICE SDD Experiment,” in Proceedings of the 11th Workshop on Electronics for LHC Experiments, Heidelberg, Sept. 12–16, 2005, CERN/LHCC-2005-038, pp. 249–252.

  52. A. van den Brink et al., “Conductive Cooling of SDD Front-End Chips for ALICE,” in Proceedings of the 7thWorkshop on Electronics for LHC Experiments, Stockholm, Sept. 10–14, 2001, CERN/LHCC/2001/034.

  53. M. Ayachi et al., “MALICE: A Full Custom Analog Memory for ALICE,” in Proceedings of the 2nd Workshop on Electronics for LHC Experiments, Balatonfured, Hungary, Sept. 23–27, 1996, CERN/LHCC/96-39, pp. 453–456.

  54. D. Lo Presti et al., “Switched Capacitor Arrays for Sparse Data Sampling,” in Proceedings of the 4th Workshop on Electronics for LHC Experiments, Rome, Sept. 21–25, 1998, CERN/LHCC/98-36, pp. 155–159.

  55. S. Panebianco et al., “ADeLine: Analog Memory for Sparse Data Sampling,” in Proceedings of the 4th Workshop on Electronics for LHC Experiments, Rome, Sept. 21–25, 1998, CERN/LHCC/98-36, pp. 242–246.

  56. D. Fancher et al., “Performance of Time-Projection Chamber,” Nucl. Instrum. Methods Phys. Res. A 161, 383–390 (1979).

    Article  Google Scholar 

  57. N. M. Nikityuk, “Gaseous Vertex Detectors,” Phys. Part. Nucl. 29, 625 (1998).

    Article  Google Scholar 

  58. J. Baechler, “Development of TPC Detector for the ALICE Experiment,” Nucl. Instrum. Methods Phys. Res. A 409, 9–13 (1998).

    Article  Google Scholar 

  59. C. Carabatos, “The ALICE TPC,” Nucl. Instrum. Methods Phys. Res. A 535, 97–100 (2004).

    Google Scholar 

  60. P. Glassel, “The ALICE TPC — An Innovate Device for Heavy Ion Collision at LHC,” Nucl. Instrum. Methods Phys. Res. A 537, 64–66 (2007).

    Article  ADS  Google Scholar 

  61. R. Baur et al., “Front-End Electronics for a TPC-Detector,” in Proceedings of the 3rd Workshop on Electronics for LHC Experiments, London, Sept. 22–26, 1997, CERN/LHCC/97-60, pp. 247–251.

  62. J. Baechler et al., “Front-End Electronics for the ALICE Detector,” in Proceedings of the 4th Workshop on Electronics for LHC Experiments, Rome, Sept. 21–25, 1998, CERN/LHCC/98-36, pp. 165–169.

  63. N. M. Nikityuk, “Electronic Methods in Experimental High-Energy Physics,” Sov. J. Part. Nucl. 23, 641 (1992).

    Google Scholar 

  64. R. Enomoto et al., “Trigger System for the TOPAZ Detector at Tristan,” Nucl. Instrum. Methods Phys. Res. A 269, 507–512 (1988).

    Article  ADS  Google Scholar 

  65. A. Imanishi et al., “Topaz Inner Drift Chamber,” Nucl. Instrum. Methods Phys. Res. A 269, 513–521 (1988).

    Article  ADS  Google Scholar 

  66. G. Darbo and B. W. Heck, “The TPC Trigger for the Delphi Experiment,” IEEE Trans. Nucl. Sci. 34, 227–231 (1987).

    Article  ADS  Google Scholar 

  67. E. Darbo et al., “The TPC Trigger for the Delphi Experiment,” IEEE Trans. Nucl. Sci. 34, 227–231 (1987).

    Article  ADS  Google Scholar 

  68. R. Compagnolo et al., “Performance of the ALICE TPC Front END Card,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN/LHCC/2003-055, pp. 165–169.

  69. J. R. Lutz et al., “Detector and Front End Electronics for ALICE and STAR Silicon Strip Layers,” in Proceedings of the 4th Workshop on Electronics for LHC Experiments, Rome, Sept. 21–25, 1998, CERN/LHCC/98-36, pp. 170–174.

  70. W. Carena et al., “PCI-Based Readout Receiver in the DAQ System,” in Proceedings of the 8th Workshop on Electronics for LHC Experiments, Colmar, France, Sept. 9–13, 2002, CERN/LHCC/2002, p. 281.

  71. R. E. Bosch et al., “Readout Control Unit of the Front-End Electronics for the ALICE Time Projection Chamber,” in Proceedings of the 8th Workshop on Electronics for LHC Experiments, Colmar, France, Sept. 9–13, 2002, CERN/LHCC/2002-34, pp. 160–163.

  72. K. Roed et al., “Irradiation Tests of the Complete ALICE TPC Front End Electronics Chain,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN/LHCC/2003-055, pp. 165–169.

  73. G. Troger et al., “FPGA Dynamic Reconfiguration in ALICE and Beyond,” in Proceedings of the 11th Workshop on Electronics for LHC Experiments, Heidelberg, Sept. 12–16, 2005, CERN/LHCC/2005-038, pp. 119–122.

  74. S. Popescu et al., “Control the Prototypes for the ALICE TPC Detector,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN/LHCC/2003-055.

  75. P. V. C. Hough, “Methods and Means for Recognizing Complex Patterns,” US Patent No. 3069654 (1962).

  76. C. Cheshkov, “Fast Hough-Transform Track Reconstruction for the ALICE TPC,” Nucl. Instrum. Methods Phys. Res. A 566, 35–39 (2006).

    Article  ADS  Google Scholar 

  77. Y. Ermolin et al., “The Use of Image Processing in Tracking,” Nucl. Instrum. Methods Phys. Res. A 289, 592–596 (1990).

    Article  ADS  Google Scholar 

  78. N. M. Nikityuk, “Methods of Processing Information from Tracking Detectors of High Energy Charged Particles,” Phys. Part. Nucl. 26, 302 (1995).

    Google Scholar 

  79. F. Klefenz et al., “A Systolic Hough Transform Processor as Second Level Trigger for Drift Chambers,” in Proceedings of the International Conference on Computing in High Energy Physics 92 (Geneva, 1992), pp. 251–254.

  80. M. Ivanov et al., “Track Reconstruction in High Density Environment,” Nucl. Instrum. Methods Phys. Res. A 566, 70–74 (2006).

    Article  ADS  Google Scholar 

  81. R. Fruhwirth, “Application Kallman Filtering to Track and Vertex Fitting,” Nucl. Instrum. Methods Phys. Res. A 262, 444–450 (1987).

    Article  ADS  Google Scholar 

  82. R. Mankel, “A Concurrent Track Evolution Algorithm for Pattern Recognition in the Hera-B Main Tracking System,” Nucl. Instrum. Methods Phys. Res. A 395, 169–184 (1997).

    Article  ADS  Google Scholar 

  83. N. Nicolaucig et al., “Lossi Compression of TPC Data and Trajectory Tracking Efficiency for the ALICE Experiment,” Nucl. Instrum. Methods Phys. Res. A 500, 412–420 (2003).

    Article  ADS  Google Scholar 

  84. V. I. Manko et al., “Photodiode Readout of the ALICE Photon Spectrometer PbWO4 Crystals,” in Proceedings of the 5th Workshop on Electronics for LHC Experiments, Snowmass, Colorado, Sept. 20–24, 1999, CERN/LHCC/99-33, pp. 232–236.

  85. M. L. Simpson et al., “Integrated Readout Electronics for the PbWO4 Photon Spectrometer,” in Proceedings of the 1st Workshop on Electronics for LHC Experiments, Lisbon, Sept. 11–15, 1995, CERN/LHCC/9556, pp. 288–291.

  86. P. Antinioly et al., “A 20ps TDS Readout of the ALICE Time of Flight System: Design and Test Results,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN/LHCC/2003-055, pp. 311–315.

  87. M. D. Shafranov, “Micropattern Gaseous Coordinate Detectors,” Phys. Part. Nucl. 33, 612 (2002).

    Google Scholar 

  88. V. V. Parkhomchuck, Yu. N. Pestov et al., “A Spark Counter with Large Area,” Nucl. Instrum. Methods Phys. Res. 93, 269–270 (1971).

    Article  ADS  Google Scholar 

  89. V. Akimov et al., “Conceptual Features of Front-End Electronics for a New Time-of-Flight Technology”, Preprint ITEP (Moscow, 2000), pp. 47–100.

  90. C. Neyer et al., “A Discriminator Chip for Time of Flight Measurement in ALICE,” in Proceedings of the 2nd Workshop on Electronic for LHC Experiments, Balatonfured, Hungary, Sept. 23–27, 1996, CERN/LHCC/96-39, pp. 238–239.

  91. C. Neyer, “A Precise Discriminator for Time of Flight Measurement in ALICE,” in Proceedings of the 1st Workshop on Electronics for LHC Experiments, Lisbon, Sept. 11–15, 1995, CERN/LHCC/95, pp. 383–386.

  92. V. Akimov et al., “Ceramic PPC Technology and Performance,” Nucl. Instrum. Methods Phys. Res. A 334, 120–124 (1994).

    Article  ADS  Google Scholar 

  93. R. Santonico et al., “Development of Resistive Plate Counters,” Nucl. Instrum. Methods Phys. Res. 187, 377–380 (1981).

    Article  ADS  Google Scholar 

  94. M. Abbrecia et al., “The Simulation of Resistive Plate Chambers in Avalanche Mode: Charge Spectra and Efficiency,” Nucl. Instrum. Methods Phys. Res. A 431, 413–427 (1999).

    Article  ADS  Google Scholar 

  95. E. Zeballos et al., “High Rate Resistive Plate Chambers,” Nucl. Instrum. Methods Phys. Res. A 367, 388–393 (1995).

    Article  ADS  Google Scholar 

  96. A. Akindov et al., “100 Psec Time-of-Flight Resolution of Dielectric Resistive Plate Chamber”, Preprint ITEP No. 20-99 (Moscow, 1999).

  97. C. Zebalos et al., “A New Type of Resistive-Plate Chamber: The Multigap RPC,” Nucl. Instrum. Methods Phys. Res. A 374, 132–135 (1996).

    Article  ADS  Google Scholar 

  98. A. Alici et al., “Aging and Rate Effects of Multigap RPC Studied at the Gamma Irradiation Facility at CERN,” Nucl. Instrum. Methods Phys. Res. A 579, 979–988 (2007).

    Article  ADS  Google Scholar 

  99. A. Akindov et al., “The Multigap Resistive Plate Chamber as a Time-of-Flight Detector,” Nucl. Instrum. Methods Phys. Res. A 456, 16–22 (2000).

    Article  ADS  Google Scholar 

  100. A. Akindov et al., “A Study of Multigap RPC at the Gamma Irradiation Facility at CERN,” Nucl. Instrum. Methods Phys. Res. A 490, 58–70 (2002).

    Article  ADS  Google Scholar 

  101. A. Blanco et al., “Development of Large Area and of Position-Sensitive Timing RPCs,” Nucl. Instrum. Methods Phys. Res. A 478, 170–175 (2002).

    Article  ADS  Google Scholar 

  102. A. Blanco et al., “Progress in Timing Resistive Plate Chambers,” Nucl. Instrum. Methods Phys. Res. A 535, 272–276 (2004).

    ADS  Google Scholar 

  103. M. C. S. Williams, “The Multigap RPC: the Time-of-Flight Detector for the ALICE Experiment,” Nucl. Instrum. Methods Phys. Res. A 478, 183–186 (2002).

    Article  ADS  Google Scholar 

  104. M. Spegel, “Recent Progress on RPCs for the ALICE TOF System,” Nucl. Instrum. Methods Phys. Res. A 453, 308–314 (2000).

    Article  ADS  Google Scholar 

  105. P. Fonte et al., “A New High-Resolution TOF Technology,” Nucl. Instrum. Methods Phys. Res. A 443, 201–204 (2000).

    Article  ADS  Google Scholar 

  106. P. Fonte et al., “High Resolution TOF with RPCs,” Nucl. Instrum. Methods Phys. Res. A 477, 17–22 (2002).

    Article  ADS  Google Scholar 

  107. D. Hatzifotiadou, “A Time of Flight Detector for the ALICE Experiment,” Nucl. Instrum. Methods Phys. Res. A 502, 123–126 (2003).

    Article  ADS  Google Scholar 

  108. A. V. Akindov et al., “Latest Results on the Performance of Multigap Resistive Plate Chamber Used for the ALICE TOF,” Nucl. Instrum. Methods Phys. Res. A 533, 74–78 (2004).

    Article  ADS  Google Scholar 

  109. A. V. Akindov et al., “Design Aspect and Prototype Test of Very Precise TDC System Implemented for Multigap RPC of ALICE-TOF,” Nucl. Instrum. Methods Phys. Res. A 533, 178–182 (2004).

    Article  ADS  Google Scholar 

  110. A. V. Akindov et al., “Study of Gas Mixtures and Aging of Multigap Resistive Plate Chamber Used for the ALICE TOF,” Nucl. Instrum. Methods Phys. Res. A 533, 91–97 (2004).

    ADS  Google Scholar 

  111. A. Blanco et al., “Simplified and Accurate Front-End Electronics Chain for Timing RPSs,”

  112. M. Mota, “High Resolution Time to Digital Convertor Based on Array of Delay Locked Loops,” in Proceedings of the 3rd Workshop on Electronics for LHC Experiments, London, Sept. 22–26, 1997, CERN/LHCC/97-69, p. 320.

  113. J. Cristiansen, “32 Channel TDC with on-Chip Buffering and Trigger Matching,” in Proceedings of the 3rd Workshop on Electronics for LHC Experiments, London, Sept. 22–26, 1997, CERN/LHCC/97-60, pp. 333–335.

  114. P. Antoniali et al., “20 ps TDC Readout Module for the ALICE Time of Flight System: Design and Test Results,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN/LHCC/2003-035, pp. 311–320.

  115. R. Caliandro et al., “A Fast Transition Radiation Detector for High-Energy Particles Selection and Triggering,” Nucl. Instrum. Methods Phys. Res. A 455, 305–318 (2000).

    Article  ADS  Google Scholar 

  116. A. Bhasin et al., “A New Developments for the ALICE Trigger,” in Proceedings of the 4th Workshop on Electronics for LHC Experiments, Rome, Sept. 21–25, 1998, CERN/LHCC/98-36, pp. 285–289.

  117. V. Angelov, “Design and Performance of the ALICE TRD Front-End Electronics,” Nucl. Instrum. Methods Phys. Res. A 563, 317–320 (2006).

    Article  ADS  Google Scholar 

  118. H. Tilser et al., “Hardware for the Detector Control System of the ALICE TRD,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN/LHCC/2003-006, pp. 326–330.

  119. N. M. Yu. Nikityuk and V. N. Samoilov, “Identification of Bunches and Particles in LHC Experiments,” Phys. Part. Nucl. 38, 41 (2007).

    Article  Google Scholar 

  120. M. Petovici et al., “A High-Efficiency Transition Radiation Detector for High-Counting-Rate Environments,” Nucl. Instrum. Methods Phys. Res. A 579, 961–966 (2007).

    Article  ADS  Google Scholar 

  121. T. Mahmoud, “The ALICE Transition Radiator Detector,” Nucl. Instrum. Methods Phys. Res. A 502, 127–132 (2003).

    Article  ADS  Google Scholar 

  122. A. Andronic, “Prototype Tests for the ALICE TRD,” IEEE Trans. Nucl. Sci. 48, 1259–1263 (2001).

    Article  ADS  Google Scholar 

  123. Addendum to ALICE Technical Proposal CERN/LHCC 99-13 (1999).

  124. C. Lippmann, “Position and Electron Identification with Prototypes of the ALICE TRD,” Nucl. Instrum. Methods Phys. Res. A 535, 457–460 (2004).

    ADS  Google Scholar 

  125. C. Adler et al., “Electron/Pion Identification with ALICE TRD Prototypes Using a Neural Network Algorithm,” Nucl. Instrum. Methods Phys. Res. A 552, 364–371 (2005).

    Article  ADS  Google Scholar 

  126. A. Wilk, “Analyses of the Electron/Pion Separation Capability with Real Size ALICE TRD Prototypes Using a Neural Network Algorithm,” Nucl. Instrum. Methods Phys. Res. A 563, 314–316 (2006).

    Article  ADS  Google Scholar 

  127. R. Bailhache and C. Lippman, “New Test Beam Results of the ALICE,” Nucl. Instrum. Methods Phys. Res. A 563, 310–313 (2006).

    Article  ADS  Google Scholar 

  128. F. Sauli, “Experimental Techniques,” CERN-EP/86-143 (Geneva, 1986).

  129. B. N. Ratcliff, “Future High Energy Physics Experiment Using RICH Detectors: The Next Generation,” Nucl. Instrum. Methods Phys. Res. A 371, 309–320 (1996).

    Article  ADS  Google Scholar 

  130. R. Arnold et al., “Photosensitive GaS Detectors for the Ring-Imaging Cherenkov (RICH) Technique and the DELPHI Barrel Prototype,” Nucl. Instrum. Methods Phys. Res. A 252, 188–207 (1986).

    Article  ADS  Google Scholar 

  131. F. Sauli, “Novel Cherenkov Photon Detectors,” Nucl. Instrum. Methods Phys. Res. A 533, 18–24 (2005).

    Article  ADS  Google Scholar 

  132. J. Seguinot and T. Ypsilantis, “Evolution of Rich Technique,” Nucl. Instrum. Methods Phys. Res. A 433, 1–16 (1999).

    Article  ADS  Google Scholar 

  133. J. Vavra, “Particle Identification Methods in High Energy Physics,” Nucl. Instrum. Methods Phys. Res. A 453, 262–278 (2000).

    Article  ADS  Google Scholar 

  134. J. Séguinot, G. Charpak, Y. Giomataris et al., “Reflective UV Photocathodes with Gas-Phase Electron Extraction: Solid, Liquid, and Adsorbed Thin Films,” Nucl. Instrum. Methods Phys. Res. A 297, 133–147 (1990).

    Article  ADS  Google Scholar 

  135. F. Piuz et al., “The CsI-Based Ring Imaging Detector for the ALICE Experiment: Technical Description of Large Prototype,” Nucl. Instrum. Methods Phys. Res. A 433, 222–234 (1999).

    Article  ADS  Google Scholar 

  136. A. Gallas, “Performance of the High Momentum Particle Identification CsI-Rich for ALICE at CERN-LHC,” Nucl. Instrum. Methods Phys. Res. A 553, 345–350 (2005).

    Article  ADS  Google Scholar 

  137. E. Piuz et al., “Final Tests of the CsI-Based Ring Imaging Detector for the ALICE Experiment,” Nucl. Instrum. Methods Phys. Res. A 433, 178–189 (1999).

    Article  ADS  Google Scholar 

  138. A. di Mauro et al., “Performance of Large Area CsI-RICH Prototypes for ALICE at LHC,” Nucl. Instrum. Methods Phys. Res. A 433, 190–200 (1999).

    Article  ADS  Google Scholar 

  139. D. Cozza et al., “The CsI-Based RICH Detector Array for the Identification of High Momentum Particles in ALICE,” Nucl. Instrum. Methods Phys. Res. A 502, 101–107 (2003).

    Article  ADS  Google Scholar 

  140. D. Cozza et al., “Recognition of Cherenkov Pattern in High Multiplicity Environment,” Nucl. Instrum. Methods Phys. Res. A 482, 226–237 (2002).

    Article  ADS  Google Scholar 

  141. D. Elia et al., “A Pattern Recognition Method for the RICH-Based HMPID Detector in ALICE,” Nucl. Instrum. Methods Phys. Res. A 433, 262–267 (1999).

    Article  ADS  Google Scholar 

  142. G. Volpe et al., “Study of Gas Cherenkov Detectors for High Momentum Charged Particle Identification,” Nucl. Instrum. Methods Phys. Res. A 572, 468–470 (2007).

    Article  ADS  Google Scholar 

  143. H. Hoedlmoser et al., “Long Term Performance and Aging of CsI Photocathodes for the ALICE/HMPI Detector,” Nucl. Instrum. Methods Phys. Res. A 574, 28–38 (2007).

    Article  ADS  Google Scholar 

  144. I. J. Bloodworth et al., “The ALICE Central Trigger Processor,” in Proceedings of the 6th Workshop on Electronics for LHC Experiments, Cracow, Sept. 11–15, 2000, CERN/LHCC/2000-41, pp. 318–322.

  145. L. G. Efimov et al., “Fast ALICE L0 Trigger,” in Proceedings of the 2nd Workshop on Electronics for LHC Experiment, Balatonfured, Hungary, Sept. 23–27, 1996, CERN/LHCC/96-39, pp. 166–169.

  146. L. G. Efimov et al., “A Fast Frond-End L0 Trigger Electronics for ALICE FMD-MCP Tests and Performance,” in Proceedings of the 3rd Workshop on Electronics for LHC Experiment, London, Sept. 22–26, 1997, CERN/LHCC/97-60, pp. 359–363.

  147. L. Efimov et al., “Fast Pre-Trigger Electronics of T0/Centrality MCP-Based Start Detector for ALICE,” in Proceedings of the 7th Workshop on Electronics for LHC Experiment, Stockholm, Sept. 10–14, 2001, CERN/LHCC/2001-034, pp. 273–286.

  148. L. G. Efimov et al., “A Prototype Fast Multiplicity Discriminator for ALICE L0 Trigger,” in Proceedings of the 7th Workshop on Electronics for LHC Experiment, Stockholm, Sept. 10–14, 2001, CERN/LHCC/2001-34.

  149. D. Evans et al., “ALICE Central Trigger Processor,” in Proceedings of the 2nd Workshop on Electronics for LHC Experiments, Balatonfured, Hungary, Sept. 22–27, 1996, CERN/LHCC/96-39, pp. 284–287.

  150. D. Evans et al., “ALICE Trigger System,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Boston, Sept. 13–17, 2004, CERN-LHCC-2004-030, pp. 277–280.

  151. H. Beker et al., “The ALICE Trigger System,” in Proceedings of the 2nd Workshop on Electronics for LHC Experiments, Balatonfured, Hungary, Sept. 23–27, 1996, CERN/LHCC/96-39, pp. 170–174.

  152. A. Akindov et al., “A Multiplicity Trigger Based on the Time of Flight Detector for the ALICE Experiments,” in Proceedings of the 11th Workshop on Electronics for LHC Experiments and Future Experiments, Heidelberg, Sept. 12–16, 2005, CERN-LHCC-2005-038, pp. 379–383.

  153. L. Rover, G. Bohner, and J. Lecoq, “An ASIC Dedicated to the RPC’s Front-End,” in Proceedings of the 6th Workshop on Electronics for LHC Experiments, Cracow, Poland, Sept. 11–15, 2000, CERN/LHCC/2000-041, pp. 323–327.

  154. V. V. Anishin et al., “Photomultipliers with Microchannel,” Nucl. Instrum. Methods Phys. Res. A 357, 103–109 (1995).

    Article  ADS  Google Scholar 

  155. S. Coeck et al., “Microchannel Plate Response to High-Intensity Ion Bunches,” Nucl. Instrum. Methods Phys. Res. A 557, 510–522 (2006).

    Article  ADS  Google Scholar 

  156. L. G. Efimov et al., “Fast Pre-Trigger Electronics T0/Centrality MCP-Based Start Detector for ALICE,” in Proceedings of the 7th Workshop on Electronics for LHC Experiments, Stockholm, Sept. 10–14, 2001, CERN/LHCC/2001-34.

  157. M. Bondia et al., “Results of In-Beam Test of an MCP-Based Vacuum Sector Prototype of the TO/Centrality Detector Prototype for ALICE,” Nucl. Instrum. Methods Phys. Res. A 478, 220–224 (2000).

    Article  ADS  Google Scholar 

  158. G. Rubin et al., “The ALICE Detector Data Link Project,” in Proceedings of the 4th Workshop on Electronics for LHC Experiments, Rome, Sept. 21–25, 1998, CERN/LHCC/98-36, pp. 369–374.

  159. S. G. Marzo et al., “Specification and Simulation of ALICE DAQ System,” in Proceedings of the 6th Workshop on Electronics for LHC Experiments, Cracow, Poland, Sept. 11–15, 2000, CERN/LHCC/2000-041, pp. 419–423.

  160. W. Carena et al., “PCI-Based Readout Receiver Card in the ALICE DAQ System,” in Proceedings of the 8th Workshop on Electronics for LHC Experiments, Colmar, France, Sept. 9–13, 2002, CERN-LHCC-2002-003, pp. 281–284.

  161. H. Smith, “Triggering at LHC Experiments,” Nucl. Instrum. Methods Phys. Res. A 478, 62–67 (2002).

    Article  ADS  Google Scholar 

  162. A. Fernandes et al., “ACORDE a Cosmic Ray Detector for ALICE,” Nucl. Instrum. Methods Phys. Res. A 572, 102–103 (2007).

    Article  Google Scholar 

  163. S. Bolea et al., “The ALICE Silicon Drift Detectors: Production and Assembly,” Nucl. Instrum. Methods Phys. Res. A 582, 733–738 (2007).

    Article  ADS  Google Scholar 

  164. H. Witters, “Dilog-2 Sparse Data Scan Readout Processor,” in Proceedings of the 6th Workshop on Electronics for LHC Experiments, Cracow, Poland, Sept. 11–15, 2000, CERN/LHCC/2000-041, pp. 179–183.

  165. T. Alt et al., “FPGA Coprocessor of High-Level Trigger Application,” in Proceedings of the 9th Workshop on Electronics for LHC Experiments, Amsterdam, 29 Sept.–3 Oct., 2003, CERN-2003-55, pp. 102–103.

  166. A. Fernandes et al., “ACORDE a Cosmic Ray Detector for ALICE,” Nucl. Instrum. Methods Phys. Res. A 572, 102–103 (2007).

    Article  Google Scholar 

  167. R. Arnaldi et al., “Study of Resistive Plate Chambers for the ALICE Dimuon Arm,” Nucl. Instrum. Methods Phys. Res. A 456, 73–76 (2000).

    Article  ADS  Google Scholar 

  168. B. Forestier, “Performance of a Prototype for the ALICE Muon Trigger at LHC,” Nucl. Instrum. Methods Phys. Res. A 533, 22–26 (2004).

    Article  ADS  Google Scholar 

  169. N. M. Nikityuk and V. N. Samoilov, Physical Devices at LHC (Dubna, 2008) [in Russian].

  170. V. V. Koren’kov and E. A. Tikhonenko, “The Conception of GRID and Computer Technologies in the LHC Era,” Phys. Part. Nucl. 32, 762 (2001).

    Google Scholar 

  171. www.symmetrymagazine.org/breaking/2010/11/18/firstmeasurements-public-f…

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.M. Nikityuk, V.N. Samoilov, 2012, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2012, Vol. 43, No. 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikityuk, N.M., Samoilov, V.N. Special features of detectors, electronics, and trigger system of the ALICE setup. Phys. Part. Nuclei 43, 492–522 (2012). https://doi.org/10.1134/S1063779612040065

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779612040065

Keywords

Navigation