An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of \({}^{50,52,53,54}\)Cr(\({\alpha,x}\)) Reactions

Abstract

The probability of a nuclear reaction occurrence is defined as cross-section which can be obtained with the experimental studies or theoretical calculations. Theoretical calculations, in which various parameters and models are involved, are most commonly preferred way in the absence of experimental data or the existence of difficulties to perform an experiment. The cross-section calculation results are effected from the input parameters, which are directly related to the selected models. Thus, utilization of the most consistent model for an investigated reaction has an undeniable importance on the cross-section calculations. By considering this, the effects of level density models and alpha optical model potentials on the cross-section calculations of \({}^{50,52,53,54}\)Cr(\(\alpha,x\)) reactions are investigated in this study. For calculations, TALYS code is used. Obtained calculation results of each investigated reaction are compared with the available experimental data, which are taken from the Experimental Nuclear Reaction Data (EXFOR) library.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. 1

    World Energy Outlook 2018 (International Energy Agency, Vienna, 2018).

  2. 2

    E. E. Bloom, S. J. Zinkle, and F. W. Wiffen, J. Nucl. Mater. 329–333, 12 (2004).

    Article  ADS  Google Scholar 

  3. 3

    K. Ehrlich, Phil. Trans. R. Soc. London, Ser. A 357, 595 (1999).

    Article  ADS  Google Scholar 

  4. 4

    M. Victoria, N. Baluc, and P. Spätig, Nucl. Fusion 41, 1047 (2001).

    Article  ADS  Google Scholar 

  5. 5

    P. M. Raole, S. P. Deshpande, and DEMO Team, Trans. Indian Inst. Met. 62, 105 (2009).

    Article  Google Scholar 

  6. 6

    A. Azzam, S. A. Said, and M. Al-abyad, Appl. Radiat. Isot. 91, 109 (2014).

    Article  Google Scholar 

  7. 7

    A. H. M. Solieman, M. Al-Abyad, F. Ditroi, and Z. A. Saleh, Nucl. Instrum. Methods Phys. Res., Sect. B 366, 19 (2016).

    Google Scholar 

  8. 8

    E. Vagena and S. Stoulos, Nucl. Phys. A 957, 259 (2017).

    Article  ADS  Google Scholar 

  9. 9

    S. Stoulos and E. Vagena, Nucl. Phys. A 980, 1 (2018).

    Article  ADS  Google Scholar 

  10. 10

    S. Parashari, S. Mukherjee, V. Vansola, R. Makwana, N. L. Singh, and B. Pandey, Appl. Radiat. Isot. 133, 31 (2018).

    Article  Google Scholar 

  11. 11

    W. Ali, M. Tashfeen, and M. Hussain, Appl. Radiat. Isot. 144, 124 (2019).

    Article  Google Scholar 

  12. 12

    G. R. Satchler, Introduction to Nuclear Reactions (McMillan, London, 1980).

    Google Scholar 

  13. 13

    H. Özdoğan, M. Şekerci, A. Kaplan, and H. Sarpün, Appl. Radiat. Isot. 140, 29 (2018).

    Article  Google Scholar 

  14. 14

    H. Özdoğan, M. Şekerci, and A. Kaplan, Appl. Radiat. Isot. 143, 6 (2019).

    Article  Google Scholar 

  15. 15

    M. Şekerci, H. Özdoğan, and A. Kaplan, Radiochim. Acta 108, 11 (2020).

    Article  Google Scholar 

  16. 16

    M. Şekerci, Radiochim. Acta 108, 459 (2020).

    Article  Google Scholar 

  17. 17

    V. V. Zerkin and B. Pritychenko, Nucl. Instrum. Methods Phys. Res., Sect. A 888, 31 (2018).

    Google Scholar 

  18. 18

    V. P. Lunev, Y. N. Shubin, and N. V. Kurenkov, Appl. Radiat. Isot. 50, 541 (1999).

    Article  Google Scholar 

  19. 19

    A. Koning, S. Hilaire, and S. Goriely, TALYS-1.9 A Nuclear Reaction Program, User Manual, 1st ed. (Netherlands, 2017). https://tendl.web.psi.ch/tendl_2019/talys.html.

  20. 20

    E. Fermi, Z. Phys. 36, 902 (1926).

    Article  ADS  Google Scholar 

  21. 21

    A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).

    Article  ADS  Google Scholar 

  22. 22

    A. V. Ignatyuk, K. K. Istekov, and G. N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979).

    Google Scholar 

  23. 23

    H. Baba, Nucl. Phys. A 159, 625 (1970).

    Article  ADS  Google Scholar 

  24. 24

    W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A 217, 269 (1973).

    Article  ADS  Google Scholar 

  25. 25

    A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975).

    Google Scholar 

  26. 26

    A. J. Koning, S. Hilaire, and S. Goriely, Nucl. Phys. A 810, 13 (2008).

    Article  ADS  Google Scholar 

  27. 27

    S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C 78, 064307 (2008).

    Article  ADS  Google Scholar 

  28. 28

    S. Hilaire and S. Goriely, Nucl. Phys. A 779, 63 (2006).

    Article  ADS  Google Scholar 

  29. 29

    S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, Phys. Rev. C 86, 064317 (2012).

    Article  ADS  Google Scholar 

  30. 30

    A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    Article  ADS  Google Scholar 

  31. 31

    L. McFadden and G. R. Satchler, Nucl. Phys. 84, 177 (1966).

    Article  Google Scholar 

  32. 32

    P. Demetriou, C. Grama, and S. Goriely, Nucl. Phys. A 707, 253 (2002).

    Article  ADS  Google Scholar 

  33. 33

    V. Avrigeanu, M. Avrigeanu, and C. Mänäilescu, Phys. Rev. C 90, 044612 (2014).

    Article  ADS  Google Scholar 

  34. 34

    V. Avrigeanu, P. E. Hodgson, and M. Avrigeanu, Phys. Rev. C 49, 2136 (1994).

    Article  ADS  Google Scholar 

  35. 35

    M. Nolte, H. Machner, and J. Bojowald, Phys. Rev. C 36, 1312 (1987).

    Article  ADS  Google Scholar 

  36. 36

    V. N. Levkovskii, Activation Cross Sections for the Nuclides of Medium Mass Region \((A=40{-}100)\) with Medium Energy ( \(E=10{-}50\) MeV) Protons and Alpha-Particles (Experiment and Systematics) (Inter-Vesti, Moscow, 1991) [in Russian].

  37. 37

    A. Hermanne, R. A. Rebeles, F. Tárkányi, and S. Takács, Nucl. Instrum. Methods Phys. Res., Sect. B 356–357, 28 (2015).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Kaplan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özdoğan, H., Şekerci, M. & Kaplan, A. An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of \({}^{50,52,53,54}\)Cr(\({\alpha,x}\)) Reactions. Phys. Atom. Nuclei 83, 820–827 (2020). https://doi.org/10.1134/S1063778820660060

Download citation