A Review of Hydride Reorientation in Zirconium Alloys for Water-Cooled Reactors

Abstract

This review summarizes the results of the available to the moment papers devoted to the precipitation of the hydride phase in zirconium alloys—the core structural materials of water-cooled reactors. The main parameters affecting the formation of zirconium hydrides having a certain orientation are analyzed. Particular attention is paid to the hydride reorientation at applied stresses and the effect of radial hydrides on both the ductility and fracture toughness of the material.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. 1

    G. L. Miller, Zirconium (Butterworths Scientific, London, 1954).

    Google Scholar 

  2. 2

    D. L. Douglass, The Metallurgy of Zirconium, Atomic Energy Review (IAEA, Vienna, 1971).

    Google Scholar 

  3. 3

    A. S. Zaimovsky, A. V. Nikulina, and N. G. Reshetnikov, Zirconium Alloys in Nuclear Energy (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  4. 4

    A. A. Plyasov, V. V. Novikov, and Yu. N. Devyatko, Phys. At. Nucl. 83, 1328 (2020); Yad. Fiz. Inzhin. 10, 113 (2019).

    Google Scholar 

  5. 5

    A. T. Motta, L. Capulongo, L.-Q. Chen, et al., J. Nucl. Mater. 518, 440 (2019).

    ADS  Article  Google Scholar 

  6. 6

    V. Perovic, G. C. Weatherly, and C. J. Simpson, Acta Metall. 31, 1381 (1983).

    Article  Google Scholar 

  7. 7

    M. Veleva, S. Arsene, M.-C. Record, et al., Metall. Mater. Trans. A 34, 567 (2003).

    Article  Google Scholar 

  8. 8

    M. P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Delayed Hydride Cracking (Springer, London, 2012).

    Google Scholar 

  9. 9

    T. A. Burtseva, Y. Yan, and M. C. Billone, ANL Report No. ML101620301 (2010).

  10. 10

    K. B. Broberg, Cracks and Fracture (Academic, London, 1999).

    Google Scholar 

  11. 11

    IAEA-TECDOC-1410 (IAEA, Vienna, 2004).

  12. 12

    K. B. Colas, Master’s Thesis (Pennsylvania State Univ., 2009).

  13. 13

    V. Perovic, G. R. Purdy, and L. M. Brown, Acta Metall. 27, 1075 (1979).

    Article  Google Scholar 

  14. 14

    V. Perovic, G. R. Purdy, and L. M. Brown, Acta Metall. 29, 889 (1981).

    Article  Google Scholar 

  15. 15

    V. Perovic, G. C. Weatherly, S. R. MacEwen, and M. Leger, Acta Metall. Matter 40, 363 (1991).

    Article  Google Scholar 

  16. 16

    H. M. Chung, R. S. Daum, J. M. Hiller, and M. C. Billone, in Zirconium in the Nuclear Industry, Proceedings of the 13th International Symposium, ASTM STP, No. 1423 (2002), p. 561.

  17. 17

    L. G. Bell and R. G. Duncan, Report AECL-5110 (Chalk River, Ontario, Canada, 1975).

  18. 18

    M. Aomi, T. Baba, et al., ASTM STP, No. 1505 (2009), p. 93.

  19. 19

    Y.-J. Kim, D. H. Kook, T.-H. Kim, and J.-S. Kim, J. Nucl. Sci. Technol. 52, 717 (2015).

    Article  Google Scholar 

  20. 20

    K. B. Colas, A. T. Motta, M. R. Daymond, and J. D. Almer, J. Nucl. Mater. 440, 586 (2013).

    ADS  Article  Google Scholar 

  21. 21

    J.-M. Lee, H. A. Kim, and D.-H. Kook, J. Nucl. Mater. 509, 285 (2018).

    ADS  Article  Google Scholar 

  22. 22

    K. Sakamoto and M. Nakatsuka, J. Nucl. Sci. Technol. 43, 1136 (2006).

    Article  Google Scholar 

  23. 23

    M. A. Martin Rengel, F. J. Gómez Sánchez, J. Ruiz-Hervías, and P. Muñoz, in Proceedings of the International Conference TopFuel’2013, Charlotte, North California (2013), p. 253.

  24. 24

    S.-J. Min, M.-S. Kim, and K.-T. Kim, J. Nucl. Mater. 441, 306 (2013).

    ADS  Article  Google Scholar 

  25. 25

    S.-J. Min, J.-J. Won, and K. Kim, J. Nucl. Mater. 448, 172 (2014).

    ADS  Article  Google Scholar 

  26. 26

    H.-J. Cha and K. N. Jang, Nucl. Eng. Technol. 47, 746 (2015).

    Article  Google Scholar 

  27. 27

    S. Valance and J. Bertsch, J. Nucl. Mater. 464, 371 (2015).

    ADS  Article  Google Scholar 

  28. 28

    G. V. Kulakov, A. V. Vatulin, Yu. V. Konovalov, et al., At. Energy 122, 87 (2017).

    Article  Google Scholar 

  29. 29

    K. B. Colas, A. T. Motta, J. D. Almer, et al., Acta Mater. 58, 6575 (2010).

    ADS  Article  Google Scholar 

  30. 30

    M. N. Cinbiz, D. A. Koss, and A. T. Motta, J. Nucl. Mater. 477, 157 (2016).

    ADS  Article  Google Scholar 

  31. 31

    M. P. Puls, Metall. Mater. Trans. A 22, 2327 (1991).

    ADS  Article  Google Scholar 

  32. 32

    J. Bai, C. Prioul, and D. Francois, Metall. Mater. Trans. A 25, 1185 (1994).

    Article  Google Scholar 

  33. 33

    S. Arsene, J. Bai, and P. Bompard, Metall. Mater. Trans. A 34A, 579 (2003).

    Article  Google Scholar 

  34. 34

    H.-H. Hsu and L.-W. Tsay, J. Nucl. Mater. 408, 67 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Standard Test Method for Tension Testing of Metallic Materials ASTM E1737-96, Annual Book of ASTM Standards (ASTM, 1997), p. 968.

  36. 36

    P. A. Raynaud, D. A. Koss, and A. T. Motta, J. Nucl. Mater. 420, 69 (2012).

    ADS  Article  Google Scholar 

  37. 37

    M. A. Martin-Rengel, SanchezF. J. Gomez, J. Ruiz-Hervias, and L. Caballero, J. Nucl. Mater. 436, 123 (2013).

    ADS  Article  Google Scholar 

  38. 38

    J.-S. Kim, T.-H. Kim, D. H. Kook, and Y.-S. Kim, J. Nucl. Mater. 456, 235 (2015).

    ADS  Article  Google Scholar 

  39. 39

    R. K. Sharma, S. Sunil, B. K. Kumawat, et al., J. Nucl. Mater. 488, 231 (2017).

    ADS  Article  Google Scholar 

  40. 40

    R. K. Sharma, A. K. Bind, G. Avinash, et al., J. Nucl. Mater. 508, 546 (2018).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Plyasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plyasov, A.A., Novikov, V.V. & Devyatko, Y.N. A Review of Hydride Reorientation in Zirconium Alloys for Water-Cooled Reactors. Phys. Atom. Nuclei 83, 1407–1424 (2020). https://doi.org/10.1134/S1063778820090197

Download citation

Keywords:

  • zirconium alloys
  • hydrogen
  • zirconium hydride
  • morphology and orientation of the hydride phase
  • experiments on reorientation
  • mechanical properties of zirconium alloys containing hydrides