ThSi10O22 Compound as Target for Production of Isomeric Thorium-229 Nuclei at Electron Beam Irradiation


A method for excitation of thorium-229 isomeric nuclei the electron beam irradiation of a solid-state target based on thorium silicate is considered. The key point for obtaining an effective yield of isomeric nuclei is the generation of secondary electrons with a significant increase in the multiplication factor for electrons that have energies within a range from 1 to 25 keV. Based on numerical simulation and theoretical estimation of the excitation cross section of isomeric transition in inelastic scattering, the yield function of isomeric nuclei was o qualitatively obtained.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    F. Riehle, Frequency Standards: Basics and Applications (Wiley, Chichester, 2006).

    Google Scholar 

  2. 2

    A. V. Taichenachev, V. I. Yudin, and S. N. Bagayev, Phys. Usp. 59, 184 (2016).

    ADS  Article  Google Scholar 

  3. 3

    Proceedings of the 676th WE-Heraeus-Seminar on Novel Optical Clocks in Atoms and Nuclei, Jul 9–12, 2018, Bad Honnef, Germany.

  4. 4

    W. F. McGrew, X. Zhang, H. Leopardi, R. J. Fasano, D. Nicolodi, K. Beloy, J. Yao, J. A. Sherman, S. A. Schaffer, J. Savory, R. C. Brown, S. Romisch, C. W. Oates, T. E. Parker, T. M. Fortier, and A. D. Ludlow, arXiv:1811.05885v1 [physics.atom-ph] (2018).

  5. 5

    B. R. Beck, C. Y. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, in Proceedings of the 12th International Conference on Nuclear Reaction Mechanisms, Varenna, Italy, 2009, Report LLNL-PROC-415170.

  6. 6

    Ek. Peik and M. Okhapkin, C. R. Phys. 16, 5 (2015).

    Article  Google Scholar 

  7. 7

    R. G. Helmer and C. W. Reich, Phys. Rev. C 49, 1845 (1994).

    ADS  Article  Google Scholar 

  8. 8

    L. Wense, B. Seiferle, M. Laatiaoui, J. B. Neumayr, H.-J. Maier, H.-F. Wirth, Ch. Mokry, J. Runke, K. Eberhardt, Ch. Dullmann, N. Trautmann, and P. Thirolf, Nature (London, U.K.) 533, 47 (2016).

    ADS  Article  Google Scholar 

  9. 9

    E. V. Tkalya, Phys. Rev. Lett. 106, 162501 (2011).

    ADS  Article  Google Scholar 

  10. 10

    K. Gulda, Nucl. Phys. A 703, 45 (2002).

    ADS  Article  Google Scholar 

  11. 11

    E. Ruchowska, Phys. Rev. C 73, 044326 (2006).

    ADS  Article  Google Scholar 

  12. 12

    V. Strizhov and E. V. Tkalya, Sov. Phys. JETP 72, 387 (1991).

    Google Scholar 

  13. 13

    A. M. Dykhne, N. V. Eremin, and E. V. Tkalya, JETP Lett. 64, 345 (1996).

    ADS  Article  Google Scholar 

  14. 14

    E. V. Tkalya, JETP Lett. 70, 371 (1999).

    ADS  Article  Google Scholar 

  15. 15

    E. V. Tkalya, JETP Lett. 71, 311 (2000).

    ADS  Article  Google Scholar 

  16. 16

    E. V. Tkalya, A. N. Zherikhin, and V. I. Zhudov, Phys. Rev. C 61, 064308 (2000).

    ADS  Article  Google Scholar 

  17. 17

    M. Cremona, A. P. Soter, R. A. Nunes, M. H. Do Pinho Mauricio, L. C. Scavarda Do Carmo, R. M. Montereali, S. Martelli, and F. Sommaet, Radiat. Eff. Defects Solids 136, 163 (1995).

    Article  Google Scholar 

  18. 18

    P. V. Borisyuk, O. S. Vasil’ev, Yu. Yu. Lebedinskii, A. V. Krasavin, E. V. Tkalya, V. I. Troyan, E. V. Chubunova, and V. P. Yakovlev, Yad. Fiz. Inzhin. 7, 207 (2016).

    Google Scholar 

  19. 19

    J. S. Villarrubia, A. E. Vladar, B. Ming, R. J. Kline, D. F. Sunday, J. S. Chawla, and S. List, Ultramicro-scopy 154, 15 (2015).

    Article  Google Scholar 

  20. 20

    A. M. Dykhne and E. V. Tkalya, JETP Lett. 67, 549 (1998).

    ADS  Article  Google Scholar 

  21. 21

    E. V. Tkalya, E. V. Akhrameev, R. V. Arutyunayn, L. A. Bol’shov, and P. S. Kondratenko, Phys. Rev. C 85, 044612 (2012).

    ADS  Article  Google Scholar 

Download references


The authors are grateful to the Dr. John Villarrubia from the National Institute of Standards and Technology for the courtesy of offering the JMONSEL software package and for the help in operating with it. The authors are also grateful to D. A. Parekhin for the help in data processing.


This study was supported by the Russian Science Foundation, project no. 18-79-00257.

Author information



Corresponding author

Correspondence to P. V. Borisyuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Smirnova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borisyuk, P.V., Chubunova, E.V., Lebedinskii, Y.Y. et al. ThSi10O22 Compound as Target for Production of Isomeric Thorium-229 Nuclei at Electron Beam Irradiation. Phys. Atom. Nuclei 83, 1313–1319 (2020).

Download citation


  • thorium-229,-232
  • low isomeric level
  • VUV nuclear transition
  • nuclear clock
  • nuclear excitation by electrons