Physics of Atomic Nuclei

, Volume 81, Issue 1, pp 24–31 | Cite as

Impact of Tensor Interaction on Beta-Delayed Neutron Emission from Neutron-Rich Nickel Isotopes

  • E. O. Sushenok
  • A. P. Severyukhin
  • N. N. Arsenyev
  • I. N. Borzov
Nuclei Theory
  • 4 Downloads

Abstract

The Skyrme energy density functional including tensor interaction is used to describe microscopically multineutron delayed-neutron emission accompanying beta decay of even–even neutron-rich nickel isotopes of mass number in the range of A = 74−80. The respective calculations are performed in the quasiparticle random-phase approximation with allowance for the two-phonon components of the wave function for states of the daughter nucleus. The properties of the lowest quadrupole excitation of 74,76,78,80Ni are also studied. It is shown that a decrease in the strength of neutron–proton tensor interaction leads to a substantial hindrance of beta decay and to an increase in the probability for delayedneutron emission.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Y. Xu, S. Nishimura, G. Lorusso, F. Browne, P. Doornenbal, G. Gey, H.-S. Jung, Z. Li, M. Niikura, P.-A. Söderström, T. Sumikama, J. Taprogge, Zs. Vajta, H. Watanabe, J. Wu, et al., Phys. Rev. Lett. 113, 032505 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. Arcones and G. Martínez-Pinedo, Phys.Rev.C 83, 045809 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and R. Surman, Phys. Rev.C 60, 014302 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys. Rev. C 65, 054322 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    S. Fracasso and G. Colò, Phys. Rev. C 76, 044307 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    C. L. Bai, H. Sagawa, H. Q. Zhang, X. Z. Zhang, G. Coló, and F. R. Xu, Phys. Lett. B 675, 28 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    I. N. Borzov, Phys. Rev. C 71, 065801 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    I.N. Borzov, EPJWeb Conf. 107, 06002 (2016).CrossRefGoogle Scholar
  10. 10.
    T. Marketin, L. Huther, and G. Martínez-Pinedo, Phys. Rev. C 93, 025805 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    Natl. Nuclear Data Center, http://www.nndc.-bnl.gov.Google Scholar
  12. 12.
    F. Minato and C. L. Bai, Phys. Rev. Lett. 110, 122501 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. P. Severyukhin, N. N. Arsenyev, I. N. Borzov, and E. O. Sushenok, Phys. Rev. C 95, 034314 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    Nguyen Van Giai, Ch. Stoyanov, and V. V. Voronov, Phys. Rev. C 57, 1204 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. P. Severyukhin, V. V. Voronov, and Nguyen Van Giai, Prog. Theor. Phys. 128, 489 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    A. P. Severyukhin and H. Sagawa, Prog. Theor. Exp. Phys. 2013, 103D03 (2013).CrossRefGoogle Scholar
  17. 17.
    T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev. C 76, 014312 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Interscience, New York, 1967, transl. 1st ed.).Google Scholar
  19. 19.
    A. P. Severyukhin and E. O. Sushenok, Phys. At. Nucl. 78, 680 (2015).CrossRefGoogle Scholar
  20. 20.
    A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev, and Nguyen Van Giai, Phys. Rev. C 90, 044320 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    E. O. Sushenok, A. P. Severyukhin, N. N. Arsenyev, and I. N. Borzov, JINR Preprint No. R4-2016-77 (Joint Inst. Nucl. Res., Dubna, 2016).Google Scholar
  22. 22.
    Yu. V. Gaponov and Yu. S. Lyutostanskii, Sov. J. Part. Nucl. 12, 528 (1981).Google Scholar
  23. 23.
    A. P. Severyukhin, V. V. Voronov, and Nguyen Van Giai, Phys. Rev. C 77, 024322 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    A. P. Severyukhin, N. N. Arsenyev, and N. Pietralla, Phys. Rev. C 86, 024311 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    V. G. Soloviev, Effect of Superconducting Pairing Correlations on Nuclear Properties (Gosatomizdat, Moscow, 1963) [in Russian].MATHGoogle Scholar
  26. 26.
    J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 71, 034310 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticle and Phonons (Energoatomizdat, Moscow, 1989; Inst. Phys. Publ., Bristol, Philadelphia, 1992).Google Scholar
  28. 28.
    V. A. Kuzmin and V. G. Soloviev, J. Phys. G 10, 1507 (1984).ADSCrossRefGoogle Scholar
  29. 29.
    G. F. Bertsch and I. Hamamoto, Phys. Rev. C 26, 1323 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    J. Suhonen, From Nucleons to Nucleus (Springer, Berlin, 2007).CrossRefMATHGoogle Scholar
  31. 31.
    A. C. Pappas and T. Sverdrup, Nucl. Phys. A 188, 48 (1972).ADSCrossRefGoogle Scholar
  32. 32.
    M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).CrossRefGoogle Scholar
  33. 33.
    M. Birch, B. Singh, I. Dillmann, D. Abriola, T. D. Johnson, E. A. McCutchan, and A. A. Sonzogni, Nucl. Data Sheets 128, 131 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    V. G. Soloviev, Kgl. Dan. Vid.Selsk.Mat. Fys.Skr. 1 (11) (1961).Google Scholar
  35. 35.
    P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).CrossRefGoogle Scholar
  36. 36.
    E. O. Sushenok and A. P. Severyukhin, J. Phys.: Conf. Ser. 788, 012046 (2017).Google Scholar
  37. 37.
    B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. Data Nucl. Data Tables 107, 1 (2016).ADSCrossRefGoogle Scholar
  38. 38.
    M. F. Alshudifat, R. Grzywacz, M. Madurga, C. J. Gross, K. P. Rykaczewski, J. C. Batchelder, C. Bingham, I. N. Borzov, N. T. Brewer, L. Cartegni, A. Fijalkowska, J. H. Hamilton, J. K. Hwang, S. V. Ilyushkin, C. Jost, et al., Phys. Rev. C 93, 044325 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    M. Madurga, S. V. Paulauskas, R. Grzywacz, D. Miller, D. W. Bardayan, J. C. Batchelder, N. T. Brewer, J. A. Cizewski, A. Fijalkowska, C. J. Gross, M. E. Howard, S. V. Ilyushkin, B. Manning, M. Matoš, A. J. Mendez II, et al., Phys. Rev. Lett. 117, 092502 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    A. Gottardo, D. Verney, I. Deloncle, S. Péru, C. Delafosse, S. Roccia, I. Matea, C. Sotty, C. Andreoiu, C. Costache, M.-C. Delattre, A. Etilé, S. Franchoo, C. Gaulard, J. Guillot, et al., Phys. Lett. B 772, 359 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. O. Sushenok
    • 1
    • 2
  • A. P. Severyukhin
    • 1
    • 2
  • N. N. Arsenyev
    • 1
  • I. N. Borzov
    • 1
    • 3
  1. 1.Bogolyubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.Dubna State UniversityDubna, Moscow oblastRussia
  3. 3.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations