Advertisement

Physics of Atomic Nuclei

, Volume 81, Issue 1, pp 146–156 | Cite as

Collapse of Rotating Stellar Cores in Single and Binary Systems: From SN 1987A to Coalescing Black Holes

  • K. A. Postnov
  • A. G. Kuranov
Elementary Particles and Fields Theory
  • 15 Downloads

Abstract

The observed special features of SN 1987A may indicate that this supernova has a quickly rotating progenitor formed as the result of the evolution of a close binary system. The possibility for the formation of quickly rotating collapsing cores of massive stars and the frequency of their formation are studied here within the standard scenario of the evolution of massive binary systems. Possible evolutionary channels of the production of binary black holes whose parameters (masses and spins) are determined from the LIGO observation of gravitational-wave signals (GW150914, LTV151012, GW151226, and GW170104) are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Podsiadlowski, Publ. Astron. Soc. Pacif. 104, 717 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    P. Podsiadlowski, P. C. Joss, and J. J. L. Hsu, Astrophys. J. 391, 246 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    A. Menon and A. Heger, arXiv: 1703.04918.Google Scholar
  4. 4.
    J. M. Centrella, K. C. B. New, L. L. Lowe, and J. D. Brown, Astrophys. J. Lett. 550, L193 (2001); astro-ph/0010574.ADSCrossRefGoogle Scholar
  5. 5.
    L. Baiotti, R. de Pietri, G. M. Manca, and L. Rezzolla, Phys. Rev. D 75, 044023 (2007), astro-ph/0609473.ADSCrossRefGoogle Scholar
  6. 6.
    S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale Univ. Press, New Haven, 1969).zbMATHGoogle Scholar
  7. 7.
    R. H. Durisen and J. E. Tohline, in Protostars and Planets II, Ed. by D. C. Black and M. S. Matthews (UA Press, Tucson, 1985), p.534.Google Scholar
  8. 8.
    V. S. Imshennik, Astron. Lett. 18, 194 (1992).Google Scholar
  9. 9.
    V. S. Imshennik and D. K. Nadezhin, Astron. Lett. 18, 79 (1992).Google Scholar
  10. 10.
    V. S. Imshennik, Phys. Usp. 53, 1081 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    V. S. Imshennik and D. V. Popov, Astron. Lett. 24, 206 (1998).ADSGoogle Scholar
  12. 12.
    V. S. Imshennik, Astron. Lett. 34, 375 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    M. Colpi and I. Wasserman, Astrophys. J. 581, 1271 (2002); astro-ph/0207327.ADSCrossRefGoogle Scholar
  14. 14.
    G. V. Lipunova, E. S. Gorbovskoy, A. I. Bogomazov, and V. M. Lipunov, Mon. Not. R. Astron. Soc. 397, 1695 (2009); arXiv: 0903.3169.ADSCrossRefGoogle Scholar
  15. 15.
    M. B. Davies, A. King, S. Rosswog, and G. Wynn, Astrophys. J. Lett. 579, L63 (2002); astroph/ 0204358.ADSCrossRefGoogle Scholar
  16. 16.
    K. Belczynski, V. Kalogera, and T. Bulik, Astrophys. J. 572, 407 (2002); astro-ph/0111452.ADSCrossRefGoogle Scholar
  17. 17.
    M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O’Shaughnessy, Astrophys. J. 759, 52 (2012); arXiv: 1202.4901.ADSCrossRefGoogle Scholar
  18. 18.
    K. A. Postnov and L. R. Yungelson, Living Rev. Relativ. 17, 3 (2014); arXiv: 1403.4754.ADSCrossRefGoogle Scholar
  19. 19.
    J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, B. Allen, E. A. Ceron, R. S. Amin, S. B. Anderson, W. G. Anderson, F. Antonucci, S. Aoudia, et al., Class. Quantum Grav. 27, 173001 (2010); arXiv: 1003.2480.ADSCrossRefGoogle Scholar
  20. 20.
    S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    M. Spera, M. Mapelli, and A. Bressan, Mon. Not. R. Astron. Soc. 451, 4086 (2015); arXiv: 1505.05201.ADSCrossRefGoogle Scholar
  22. 22.
    M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O’Shaughnessy, Astrophys. J. 779, 72 (2013); arXiv: 1308.1546.ADSCrossRefGoogle Scholar
  23. 23.
    B. P. Abbott et al. (LIGO Sci. Collab. and Virgo Collab.), Phys. Rev. Lett. 116, 061102 (2016); arXiv: 1602.03837.ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    B. P. Abbott et al., Phys. Rev. X 6, 041015 (2016); arXiv: 1606.04856.Google Scholar
  25. 25.
    D. Kushnir, M. Zaldarriaga, J. A. Kollmeier, and R. Waldman, Mon. Not. R. Astron. Soc. 462, 844 (2016); arXiv: 1605.03839.ADSCrossRefGoogle Scholar
  26. 26.
    K. Hotokezaka and T. Piran, Astrophys. J. 842, 111 (2017); arXiv: 1702.03952.ADSCrossRefGoogle Scholar
  27. 27.
    C. L. Rodriguez, S. Chatterjee, and F. A. Rasio, Phys. Rev. D 93, 084029 (2016); arXiv: 1602.02444.ADSCrossRefGoogle Scholar
  28. 28.
    C. Talbot and E. Thrane, Phys. Rev. D 96, 023012 (2017); arXiv: 1704.08370.ADSCrossRefGoogle Scholar
  29. 29.
    S. Allain, Astron. Astrophys. 333, 629 (1998).ADSGoogle Scholar
  30. 30.
    H. C. Spruit, Astron. Astrophys. 381, 923 (2002); astro-ph/0108207.ADSCrossRefGoogle Scholar
  31. 31.
    J. Braithwaite and H. C. Spruit, arXiv: 1510.03198.Google Scholar
  32. 32.
    J.-P. Zahn, S. Talon, and J. Matias, Astron. Astrophys. 322, 320 (1997); astro-ph/9611189.ADSGoogle Scholar
  33. 33.
    J. R. Hurley, C. A. Tout, and O. R. Pols, Mon.Not.R. Astron. Soc. 329, 897 (2002); astro-ph/0201220.ADSCrossRefGoogle Scholar
  34. 34.
    H. Sana, S. E. de Mink, A. de Koter, N. Langer, C. J. Evans, M. Gieles, E. Gosset, R. G. Izzard, J.-B. le Bouquin, and F. R. N. Schneider, Science 337, 444 (2012); arXiv: 1207.6397.ADSCrossRefGoogle Scholar
  35. 35.
    H. Spruit and E. S. Phinney, Nature 393, 139 (1998); astro-ph/9803201.ADSCrossRefGoogle Scholar
  36. 36.
    S. B. Popov and R. Turolla, Astrophys. Space Sci. 341, 457 (2012); arXiv: 1204.0632.ADSCrossRefGoogle Scholar
  37. 37.
    A. Noutsos, D. H. F. M. Schnitzeler, E. F. Keane, M. Kramer, and S. Johnston, Mon. Not. R. Astron. Soc. 430, 2281 (2013); arXiv: 1301.1265.ADSCrossRefGoogle Scholar
  38. 38.
    M. C. Miller and J. M. Miller, Phys. Rep. 548, 1 (2015); arXiv: 1408.4145.ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Fuller, M. Cantiello, D. Lecoanet, and E. Quataert, Astrophys. J. 810, 101 (2015); arXiv: 1502.07779.ADSCrossRefGoogle Scholar
  40. 40.
    B. Paxton, P. Marchant, J. Schwab, E. B. Bauer, L. Bildsten, M. Cantiello, L. Dessart, R. Farmer, H. Hu, N. Langer, R. H. D. Townsend, D. M. Townsley, and F. X. Timmes, Astrophys. J. Suppl. Ser. 220, 15 (2015); arXiv: 1506.03146.ADSCrossRefGoogle Scholar
  41. 41.
    V. S. Imshennik and V. O. Molokanov, Astron. Lett. 35, 799 (2009).ADSCrossRefGoogle Scholar
  42. 42.
    J. R. Hurley, O. R. Pols, and C. A. Tout, Mon. Not. R. Astron. Soc. 315, 543 (2000); astro-ph/0001295.ADSCrossRefGoogle Scholar
  43. 43.
    R. O’Shaughnessy, D. Gerosa, and D. Wysocki, arXiv: 1704.03879.Google Scholar
  44. 44.
    M. Zevin, C. Pankow, C. L. Rodriguez, L. Sampson, E. Chase, V. Kalogera, and F. A. Rasio, arXiv: 1704.07379.Google Scholar
  45. 45.
    T. Kinugawa, K. Inayoshi, K. Hotokezaka, D. Nakauchi, and T. Nakamura, Mon. Not. R. Astron. Soc. 442, 2963 (2014); arXiv: 1402.6672.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sternberg Astronomical Institute (GAISh)Moscow State UniversityMoscowRussia

Personalised recommendations