Skip to main content
Log in

Formation of Superheavy Elements in Nature

  • Nuclei Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2018

This article has been updated

Abstract

It is shown that superheavy elements may also be formed in the main r process responsible for the formation of the heaviest elements observed in nature. Under conditions of a high neutron density, the nucleosynthesis region lies close to the neutron drip line, so that the r process may circumvent the region where nuclei undergo spontaneous fissions and therefore have short lifetimes. However, a high induced-fission rate, which increases with the charge number, may prevent the nucleosynthesis wave from overcoming the region of isotopes heavier than curium, and the beta-decay chain leading to an increase in the charge number of product elements inevitably results in the spontaneous fission of the majority of product nuclei. Calculations of nucleosynthesis that were performed with available nuclear data within the scenario of a neutron-star merger reveal that only Z < 106 superheavy elements are formed. Their abundance at the end of the r process is commensurate with the abundance of uranium, but their lifetime does not exceed several years, so that they fast undergo decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 15 October 2018

    The list of affiliations should read: Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute, Bol’shaya Cheremuskinskaya ul. 25, Moscow, 117218 Russia

    Sternberg Astronomical Institute (GAISh), Moscow State University, Universitetskii pr. 13, Moscow, 119992 Russia

    National Research Center “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182, Russia

References

  1. W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).

    Article  Google Scholar 

  2. A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys. Lett. 22, 500 (1966).

    Article  ADS  Google Scholar 

  3. H. Meldner, Phys. Rev. 178, 1815 (1969).

    Article  ADS  Google Scholar 

  4. S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, L. L. Lamm, P. Möller, and B. Nilsson, Nucl. Phys. A 131, 1 (1969).

    Article  ADS  Google Scholar 

  5. J. Grummann, B. Fink, U. Mosel, and W. Greiner, Z. Phys. 228, 371 (1969).

    Article  ADS  Google Scholar 

  6. K. A. Brueckner, J. H. Chirico, and H. W. Meldner, Phys. Rev. C 4, 732 (1971).

    Article  ADS  Google Scholar 

  7. M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C 60, 034304 (1999).

    Article  ADS  Google Scholar 

  8. P.-H. Heenen and W. Nazarewicz, Europhys. News 33, 1 (2002).

    Article  ADS  Google Scholar 

  9. S. Cwiok, P.-H. Heenen, and W. Nazarewicz, Nature 433, 705 (2005).

    Article  ADS  Google Scholar 

  10. M. Bender, W. Nazarewicz, and P.-G. Reinhard, Phys. Lett. B 515, 42 (2001).

    Article  ADS  Google Scholar 

  11. P. Möller, Int. J. Mod. Phys. E 19, 575 (2010).

    Article  ADS  Google Scholar 

  12. A. Sobiczewski and P. Rozmej, Int. J. Mod. Phys. E 20, 325 (2011).

    Article  ADS  Google Scholar 

  13. J. Erler, K. Langanke, H. P. Loens, G. Martínez-Pinedo, and P.-G. Reinhard, Phys. Rev. C 85, 025802 (2012).

    Article  ADS  Google Scholar 

  14. Yu. T. Oganessian et al., Nucl. Phys. A 734, 109 (2004).

    Article  ADS  Google Scholar 

  15. K. Moody (for the Dubna–Livermore Collab.), Nucl. Phys. A 734, 188 (2004).

    Article  ADS  Google Scholar 

  16. S. Hofmann, Lect. Notes Phys. 764, 203 (2009).

    Article  ADS  Google Scholar 

  17. Yu. T. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, et al., Phys. Rev. C 74, 044602 (2006).

    Article  ADS  Google Scholar 

  18. Y. T. Oganessian, F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, et al., Phys. Rev. C 83, 054315 (2011).

    Article  ADS  Google Scholar 

  19. D. N. Schramm and W. A. Fowler, Nature 231, 103 (1971).

    Article  ADS  Google Scholar 

  20. G. N. Flerov and G. M. Ter-Akopian, Rep. Prog. Phys. 46, 817 (1983).

    Article  ADS  Google Scholar 

  21. G. N. Flerov, T. P. Zholud, O. Otgonsuren, V. P. Perelygin, and H. B. Wiik, Geochim. Cosmochim. Acta 40, 305 (1976).

    Article  ADS  Google Scholar 

  22. J. R. Niks, Ann. Rev. Nucl. Sci. 22, 65 (1972).

    Article  ADS  Google Scholar 

  23. R. Smolańchuk, Phys. Rev. C 56, 812 (1997).

    Article  ADS  Google Scholar 

  24. A. Marinov, I. Rodushkin, A. Pape, Y. Kashiv, D. Kolb, R. Brandt, R. V. Gentry, H. W. Miller, L. Halicz, and I. Segal, Int. J. Mod. Phys. E 18, 621 (2009).

    Article  ADS  Google Scholar 

  25. A. Marinov, I. Rodushkin, D. Kolb, A. Pape, Y. Kashiv, R. Brandt, R. V. Gentry, and H. W. Miller, Int. J. Mod. Phys. E 19, 131 (2010).

    Article  ADS  Google Scholar 

  26. A. B. Aleksandrov, A. V. Bagulya, L. A. Goncharova, A. I. Ivliev, G. V. Kalinina, L. L. Kashkarov, N. S. Konovalova, N. G. Poluhina, N. I. Starkov, and M. S. Vladimirov, in Proceedings of the 76th Annual Meeting of the Meteoritical Society, Edmonton, Canada, 2013, Meteorit. Planet. Sci., Spec. Iss., 5265 (2013).

    Google Scholar 

  27. P. Ludwig, T. Faestermann, G. Korschinek, G. Rugel, I. Dillmann, L. Fimiani, S. Bishop, and P. Kumar, Phys. Rev. C 85, 024315 (2012).

    Article  ADS  Google Scholar 

  28. V. I. Zagrebaev, A. V. Karpov, I. N. Mishustin, and W. Greiner, Phys. Rev. C 84, 044617 (2011).

    Article  ADS  Google Scholar 

  29. G. R. Burbidge, E. M. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  30. J. J. Cowan, F.-K. Thielemann, and J. W. Truran, Phys. Rep. 208, 267 (1991).

    Article  ADS  Google Scholar 

  31. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).

    Article  ADS  Google Scholar 

  32. F.-K. Thielemann, A. Arcones, R. Käppeli, M. Liebendörfer, T. Rauscher, C. Winteler, C. Fröhlich, I. Dillmann, T. Fischer, G. Martínez-Pinedo, K. Langanke, K. Farouqi, K.-L. Kratz, I. Panov, and I. Korneev, Prog. Part. Nucl. Phys. 66, 346 (2011).

    Article  ADS  Google Scholar 

  33. I. V. Panov, Astron. Lett. 29, 163 (2003).

    Article  ADS  Google Scholar 

  34. T. A. Thompson, A. Burrows, and B. S. Meyer, Astrophys. J. 562, 887 (2001).

    Article  ADS  Google Scholar 

  35. B. S. Meyer, G. J. Mathews, W. M. Howard, S. E. Woosley, and R. D. Hoffman, Astrophys. 399, 656 (1992).

    Article  ADS  Google Scholar 

  36. I. V. Panov and H.-Th. Janka, Astron. Astrophys. 494, 829 (2009).

    Article  ADS  Google Scholar 

  37. G. S. Bisnovatyi-Kogan and V. M. Chechetkin, Astrophys. Space Sci. 89, 447 (1983).

    Article  ADS  Google Scholar 

  38. S. Rosswog, M. Liebendorfer, F.-K. Thielemann, M. B. Davies, W. Benz, and T. Piran, Astron. Astrophys. 341, 499 (1999).

    ADS  Google Scholar 

  39. Sh. Wanajo and H.-T. Janka, Astrophys. J. 746, 180 (2012).

    Article  ADS  Google Scholar 

  40. S. E. Woosley, J. R. Wilson, G. J. Mathews, R. D. Hoffman, and B. S. Meyer, Astrophys. J. 433, 229 (1994).

    Article  ADS  Google Scholar 

  41. Sh. Wanajo, T. Kajino, G. J. Mathews, and K. Otsuki, Astrophys. J. 554, 578 (2001).

    Article  ADS  Google Scholar 

  42. K. Farouqi, K.-L. Kratz, B. Pfeiffer, T. Rauscher, F.-K. Thielemann,, and J. W. Truran, Astrophys. J. 712, 1359 (2010).

    Article  ADS  Google Scholar 

  43. K. Sumiyoshi, M. Terasawa, G. J. Mathews, T. Kajino, S. Yamada, and H. Suzuki, Astrophys. J. 562, 880 (2001).

    Article  ADS  Google Scholar 

  44. W. Hillebrandt, K. Nomoto, and R. G. Wolf, Astron. Astrophys. 133, 175 (1984).

    ADS  Google Scholar 

  45. Sh. Wanajo, M. Tamamura, N. Itoh, K. Nomoto, Y. Ishimaru, T. C. Beers, and S. Nozawa, Astrophys. J. 593, 968 (2003).

    Article  ADS  Google Scholar 

  46. H. Ning, Y.-Z. Qian, and B. S. Meyer, Astrophys. J. Lett. 667, L159 (2007).

    Article  ADS  Google Scholar 

  47. Sh. Wanajo, K. Nomoto, H.-T. Janka, F. S. Kitaura, and B. Müller, Astrophys. J. 695, 208 (2009)

    Article  ADS  Google Scholar 

  48. T. Fischer, S. C. Whitehouse, A. Mezzacappa, F.-K. Thielemann, and M. Liebendorfer, Astron. Astrophys. 517, 1 (2010).

    Article  Google Scholar 

  49. L. Hudepohl, B. Müeller, H.-T. Janka, A. Marek, and G. G. Raffelt, Phys. Rev. Lett. 104, 251101 (2010).

    Article  ADS  Google Scholar 

  50. Sh. Wanajo, H.-T. Janka, and B. Müller, Astrophys. J. Lett. 726, L15 (2011).

    Article  ADS  Google Scholar 

  51. M. Terasawa, K. Sumiyoshi, T. Kajino, G. Mathews, and I. Tanihata, Astrophys. J. 562, 470 (2001).

    Article  ADS  Google Scholar 

  52. S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Sov.Astron. Lett. 10, 177 (1984).

    ADS  Google Scholar 

  53. G. S. Bisnovatyi-Kogan and V. M. Chechetkin, Sov. Phys. Usp. 22, 89 (1979).

    Article  ADS  Google Scholar 

  54. C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, Astrophys. J. Lett. 525, L121 (1999).

    Article  ADS  Google Scholar 

  55. O. Korobkin, S. Rosswog, A. Arcones, and C. Winteler, Mon. Not. R. Astron. Soc. 426, 1940 (2012).

    Article  ADS  Google Scholar 

  56. C. Winteler, R. Käppeli, A. Perego, A. Arcones, N. Vasset, N. Nishimura, M. Liebendorfer, and F.-K. Thielemann, Astrophys. J. Lett. 750, L22 (2012).

    Article  ADS  Google Scholar 

  57. I. V. Panov and F.-K. Thielemann, Astron. Lett. 30, 647 (2004).

    Article  ADS  Google Scholar 

  58. I. V. Panov and F.-K. Thielemann, Astron. Lett. 29, 510 (2003).

    Article  ADS  Google Scholar 

  59. I. Yu. Korneev and I. V. Panov, Astron. Lett. 37, 864 (2011).

    Article  ADS  Google Scholar 

  60. I. Petermann, K. Langanke, G. Martínez-Pinedo, I. V. Panov, P.-G. Reinhard, and F.-K. Thielemann, Eur.Phys. J. A 48, 122 (2012).

    Article  ADS  Google Scholar 

  61. B. D. Metzger, G. Martínez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen, R. Thomas, P. Nugent, I. V. Panov, and N. T. Zinner, Mon. Not. R. Astron. Soc. 406, 2650 (2010).

    Article  ADS  Google Scholar 

  62. F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, Ann. Rev. Nucl. Part. Sci. 67, 1 (2017).

    Article  Google Scholar 

  63. W. D. Myers and W. J. Swiatecki, Phys. Rev. C 60, 014606 (1999).

    Article  ADS  Google Scholar 

  64. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  65. Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables 61, 127 (1995).

    Article  ADS  Google Scholar 

  66. A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 679, 337 (2001).

    Article  ADS  Google Scholar 

  67. D. K. Nadyozhin, I. V. Panov, and S. I. Blinnikov, Astron. Astrophys. 335, 207 (1998).

    ADS  Google Scholar 

  68. I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, Astron. Lett. 34, 189 (2008).

    Article  ADS  Google Scholar 

  69. K.-L. Kratz, J.-P. Bitouzet, F.-K. Thielemann, P. Möller, and B. Pfeiffer, Astrophys. J. 403, 216 (1993).

    Article  ADS  Google Scholar 

  70. I. V. Panov, E. Kolbe, B. Pfeiffer, T. Rauscher, K.-L. Kratz, and F.-K. Thielemann, Nucl. Phys. A 747, 633 (2005).

    Article  ADS  Google Scholar 

  71. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).

    Article  ADS  Google Scholar 

  72. I. V. Panov, I. Yu. Korneev, T. Rauscher, and F.-K. Thielemann, Astron. Astrophys. 513, A61 (2010).

    Article  Google Scholar 

  73. J. J. Cowan, F.-K. Thielemann, and J. W. Truran, Astrophys. J. 323, 543 (1987).

    Article  ADS  Google Scholar 

  74. I. V. Panov, I. Yu. Korneev, Yu. S. Lyutostansky, and F.-K. Thielemann, Phys. At. Nucl. 76, 88 (2013).

    Article  Google Scholar 

  75. Yu. S. Lyutostanskiĭ, V. I. Lyashchuk, and I. V. Panov, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 2197 (1990).

    Google Scholar 

  76. W. J. Swiatecki, Phys. Rev. 100, 937 (1955).

    Article  ADS  Google Scholar 

  77. Z. Patyk, R. Smolanczuk, and A. Sobiczewski, Nucl. Phys. A 626, 337 (1997).

    Article  ADS  Google Scholar 

  78. P. Möller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

    Article  ADS  Google Scholar 

  79. I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, Phys. At. Nucl. 72, 1026 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Panov.

Additional information

Original Russian Text © I.V. Panov, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 1, pp. 57–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, I.V. Formation of Superheavy Elements in Nature. Phys. Atom. Nuclei 81, 68–75 (2018). https://doi.org/10.1134/S1063778818010167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818010167

Navigation