Advertisement

Physics of Atomic Nuclei

, Volume 81, Issue 1, pp 15–23 | Cite as

Probable Decay Modes at Limits of Nuclear Stability of the Superheavy Nuclei

  • M. Bhuyan
Nuclei Theory

Abstract

The modes of decay for the even–even isotopes of superheavy nuclei of Z = 118 and 120 with neutron number 160 ≤ N ≤ 204 are investigated in the framework of the axially deformed relativistic mean field model. The asymmetry parameter η and the relative neutron–proton asymmetry of the surface to the center (R η ) are estimated from the ground state density distributions of the nucleus. We analyze the resulting asymmetry parameter η and the relative neutron–proton asymmetry R η of the density play a crucial role in the mode(s) of decay and its half-life. Moreover, the excess neutron richness on the surface, facets a superheavy nucleus for β decays.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    S. Hofmann, V. Ninov, F. P. Heβberger, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schött, A. G. Popeko, A.V. Yeremin, A. N. Andreyev, S. Saro, R. Janik, and M. Leino, Z. Phys. A 350, 277 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    S. Hofmann, V. Ninov, F. P. Heβberger, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schött, A. G. Popeko, A.V. Yeremin, A. N. Andreyev, S. Saro, R. Janik, and M. Leino, Z. Phys. A 350, 281 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    S. Hofmann, V. Ninov, F. P. Heβberger, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schött, A. G. Popeko, A. V. Yeremin, S. Saro, R. Janik, and M. Leino, Z. Phys. A 354, 229 (1996).ADSGoogle Scholar
  5. 5.
    S. Hofmann, Rep. Prog. Phys. 61, 639 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    S. Hofmann, Acta Phys. Pol. B 30, 621 (1999).ADSGoogle Scholar
  7. 7.
    Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, et al., Phys. Rev. Lett. 83, 3154 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. Ts. Oganessian, Nucl. Phys. A 685, 17c (2001).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, et al., Phys. Rev. C 69, 021601(R) (2004).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. Ts. Oganessian, J. Phys. G 34, R165 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, et al., Phys. Rev. Lett. 104, 142502 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    Yu. Ts. Oganessian F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, et al., Phys. Rev. C 83, 054315 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    R. Eichler, N. V. Aksenov, A. V. Belozerov, G. A. Bozhikov, V. I. Chepigin, R. Dressler, S. N. Dmitriev, H. W. Gäggeler, V. A. Gorshkov, F. Haenssler, M. G. Itkis, V. Ya. Lebedev, A. Laube, O. N. Malyshev, Yu. Ts. Oganessian, O. V. Petruschkin, et al., Nucl. Phys. A 787, 373c (2007).ADSCrossRefGoogle Scholar
  14. 14.
    L. Satpathy and S. K. Patra, J. Phys. G 30, 771 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Patyk and A. Sobiczewski, Nucl. Phys. A 533, 132 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    D. N. Poenaru, I.-H. Plonski, and W. Greiner, Phys. Rev. C 74, 014312 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    C. Samanta, D. N. Basu, and P. R. Chowdhury, J. Phys. Soc. Japan 76, 124201 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    D. S. Delin, R. J. Liotta, and R. Wyss, Phys. Rev. C 76, 044301 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    H. F. Zhang, and G. Royer, Phys. Rev. C 76, 047304 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    U. Mosel, B. Fink, and W. Greiner, in Memorandum zur Errichtung eines gemeinsamen Ausbildungszentrums für Kernphysik der Hessischen Hochschulen (Darmstadt, Frankfurt am Main; Marburg, 1966).Google Scholar
  21. 21.
    H. Meldner, Ph.D. Thesis, University Frankfurt am Main (1966).Google Scholar
  22. 22.
    U. Mosel and W. Greiner, Z. Phys. 222, 261 (1969).ADSCrossRefGoogle Scholar
  23. 23.
    S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, I.-L. Lamm, P. Möller, and B. Nilsson, Nucl. Phys. A 131, 1 (1969).ADSCrossRefGoogle Scholar
  24. 24.
    P. Möller and J. R. Nix, Nucl. Phys. A 549, 84 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    M. Beiner, H. Flocard, M. Veneroni, and P. Quentin, Phys. Scr. 10, Suppl. A, 84 (1974).ADSCrossRefGoogle Scholar
  26. 26.
    R. K. Gupta, S. K. Patra, and W. Greiner, Mod. Phys. Lett. A 12, 1727 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    S. Ahmad, M. Bhuyan, and S. K. Patra, Int. J. Mod. Phys. E 21, 1250092 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    M. Bhuyan and S. K. Patra, Mod. Phys. Lett. A 27, 1250173 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    S. Çwiok, J. Dobaczewski, P. H. Heenen, P. Magierski, and W. Nazarewicz, Nucl. Phys. A 611, 211 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    J. Boguta and A. R. Bodmer, Nucl. Phys.A 292, 413 (1977).ADSCrossRefGoogle Scholar
  31. 31.
    B. D. Serot and J. D. Walecka, in Advances in Nuclear Physics, Ed. by J. W. Negele and Erich Vogt (Plenum Press, New York, 1986), Vol. 16, p.1.Google Scholar
  32. 32.
    W. Pannert, P. Ring, and J. Boguta, Phys. Rev. Lett. 59, 2420 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    G. A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A. V. Afanasjev, and P. Ring, Phys. Lett. B 671, 36 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    S. K. Patra, M. Bhuyan, M. S. Mehta, and Raj K. Gupta, Phys. Rev. C 80, 034312 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    M. Bhuyan, S. K. Patra, and Raj K. Gupta, Phys. Rev. C 84, 014317 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).ADSCrossRefGoogle Scholar
  38. 38.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rept. 409, 101 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    N. Paar, D. Vretenar, and G. Colo, Rep. Prog. Phys. 70, 691 (2007).ADSCrossRefGoogle Scholar
  42. 42.
    T. Niksić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    Xian-Feng Zhao, and Huan-Yu Jia, Phys. Rev. C 85, 065806 (2012).ADSCrossRefGoogle Scholar
  44. 44.
    M. Bhuyan, S. K. Patra, and Raj K. Gupta, J. Phys.G 42, 015105 (2015).ADSCrossRefGoogle Scholar
  45. 45.
    M. Bhuyan, Phys. Rev. C 92, 034323 (2015).ADSCrossRefGoogle Scholar
  46. 46.
    I.V. Panov, I. Yu. Korneev, and F.-K. Thielemann, Yad. Fiz. 72, 1070 (2009) [Phys. Atom. Nucl. 72, 1026 (2009)].Google Scholar
  47. 47.
    S. Goriely and G. M. Pinedo, Nucl. Phys. A 944, 158 (2015).ADSCrossRefGoogle Scholar
  48. 48.
    S. K. Patra, W. Greiner, and R. K. Gupta, J. Phys. G 26, L65 (2000).ADSCrossRefGoogle Scholar
  49. 49.
    M. Del Estal, M. Centelles, X. Vin˜ as, and S. K. Patra, Phys. Rev. C 63, 044321 (2001).ADSCrossRefGoogle Scholar
  50. 50.
    M. Del Estal, M. Centelles, X. Vin˜ as, and S. K. Patra, Phys. Rev. C 63, 024314 (2001).ADSCrossRefGoogle Scholar
  51. 51.
    M. A. Preston and R. K. Bhaduri, Structure of the Nucleus (Addition-Wesley, 1975), p.144.Google Scholar
  52. 52.
    S. K. Patra, R. K. Choudhury, and L. Satpathy, J. Phys. G 37, 085103 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    V. E. Viola, Jr. and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966).CrossRefGoogle Scholar
  54. 54.
    S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Yu. S. Lutostansky, and E. E. Saperstein, Eur. Phys. J. A 53, 33 (2017).ADSCrossRefGoogle Scholar
  55. 55.
    P. Möller, J. R. Nix, W. D. Wyers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).ADSCrossRefGoogle Scholar
  56. 56.
    P. Möller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).ADSCrossRefGoogle Scholar
  57. 57.
    Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, et al., Phys. Rev. C 74, 044602 (2006).ADSCrossRefGoogle Scholar
  58. 58.
    M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Instituto Tecnológico de Aeronáutica, São José dos CamposSão PauloBrazil

Personalised recommendations