Physics of Atomic Nuclei

, Volume 80, Issue 11, pp 1656–1661 | Cite as

Measurement of Temperature and Density Profiles of the Plasma at PR-2 Facility

Engineering Design of Nuclear Physics Equipment


A new system of probe diagnostics at linear plasma simulator PR-2 is described, allowing us to measure the profiles of plasma temperature and density in different cross sections of the plasma column. The Langmuir probe fixed to the movable part of the two-coordinate positioning system built into the PR-2 passes the region of the discharge area during the process of measuring plasma parameters. The overall dimensions of the positioning system make it possible to mount electrical probes (magnetic probes, optical fibers, and other diagnostic equipment) covering almost the entire volume of the vacuum chamber between the magnetic mirrors of the device. We present the measurement results of local plasma parameters of the beam-plasma discharge (BPD) for different values of the input power and working gas pressure. The boundaries of appearance of discharge of three types were determined: the diffusive BPD mode, the BPD mode, and the arc mode. Dependences of the plasma concentration and temperature on the input power for different values of pressure have been also determined.


Langmuir probe beam-plasma discharge discharge regimes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Langmuir, Proc. Natl. Acad. Sci. USA 14, 627 (1928).ADSCrossRefGoogle Scholar
  2. 2.
    M. J. Druyvesteyn, Z. Phys. 64, 790 (1930).ADSCrossRefGoogle Scholar
  3. 3.
    M. J. Druyvesteyn and N. Warmoltz, Phys. Mag 17, 1 (1935).Google Scholar
  4. 4.
    Yu. M. Kagan and V. I. Perel, Sov. Phys. Usp. 6, 767 (1964).ADSCrossRefGoogle Scholar
  5. 5.
    V. I. Kolobov, J. Phys. D: Appl. Phys. 39, R487 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. B. Golubovskii et al., Sov. Phys. Tech. Phys. 33, 1046 (1988).Google Scholar
  7. 7.
    V. I. Demidov et al., Sov. J. Plasma Phys. 12, 866 (1986).Google Scholar
  8. 8.
    P. Gill and C. E. Webb, J. Phys. D: Appl. Phys. 10, 299 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    E. O. Johnoson and L. Malter, Phys. Rev. 76, 1411 (1949).ADSCrossRefGoogle Scholar
  10. 10.
    E. O. Johnoson and L. Malter, Phys. Rev. 80, 58 (1950).ADSCrossRefGoogle Scholar
  11. 11.
    W. H. Ernst, Helv. Phys. Asta 8, 381 (1935).Google Scholar
  12. 12.
    M. Sato and Y. Hatta, J. Sci. Instrum. 39, 481 (1962).ADSCrossRefGoogle Scholar
  13. 13.
    L. Tonks, H. M. Mott-Smith, and I. Langmuir, Phys. Rev. 28, 104 (1926).ADSCrossRefGoogle Scholar
  14. 14.
    G. F. Matthews, Plasma Phys. Control. Fusion 36, 1595 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    V. I. Demidov, S. V. Ratynskaia, and K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    I. Katsumata and M. Okazaki, Jpn. J. Appl. Phys., Pt. 1 6, 123 (1967).ADSCrossRefGoogle Scholar
  17. 17.
    V. I. Demidov, M. E. Koepke, and Y. Raitsen, Rev. Sci. Instrum. 81, 10E129 (2010).CrossRefGoogle Scholar
  18. 18.
    I. Katsumata, Contrib. Plasma Phys. 36, 73 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    J. P. Gunn et al., Czech. J. Phys. 52, 1107 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    J. Adamek et al., Contrib. Plasma Phys. 50, 854 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    K. M. Gutorov et al., in Proceedings of the 28th Conference on Phenomena in Ionized Gases ICPIG, 2007, p.378.Google Scholar
  22. 22.
    K. M. Gutorov, I. V. Vizgalov, I. A. Sorokin and F. S. Podolyako, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 612 (2016).CrossRefGoogle Scholar
  23. 23.
    K. M. Gutorov et al., Prikl. Fiz., No. 5, 73 (2009).Google Scholar
  24. 24.
    K. M. Gutorov, I. V. Vizgalov, E. A. Markina, and V. A. Kurnaev, Bull. Russ. Acad. Sci.: Phys. 74, 188 (2010).CrossRefGoogle Scholar
  25. 25.
    K. M. Gutorov, I. V. Vizgalov, and V. A. Kurnaev, Prikl. Fiz., No. 6, 87 (2011).Google Scholar
  26. 26.
    K. M. Gutorov, I. V. Vizgalov, and V. A. Kurnaev, Plasma Phys. Rep. 38, 1050 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    I. Sorokin et al., Phys. Proc. 71, 428 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    I. A. Sorokin, I. V. Vizgalov, K. M. Gutorov, and F. S. Podolyako, Bull. Lebedev Phys. Inst. 42, 350 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    I. V. Vizgalov et al., J. Phys.: Conf. Ser. 747, 012020 (2016).Google Scholar
  30. 30.
    I. Sorokin, D. Kolodko, and I. Vizgalov, AIP Conf. Proc. 1771, 050010 (2016).CrossRefGoogle Scholar
  31. 31.
    V. Popov, K. Gutorov, and I. Sorokin, Phys. Proc. 71, 127 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    V. A. Godyak and V. I. Demidov, J. Phys. D: Appl. Phys. 44, 269501 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    V. A. Godyak and B. M. Alexandrovich, J. Appl. Phys. 118, 233302 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    D. G. Voloshin A. N. Vasil’eva, A. S. Kovalev, Yu. A. Mankelevich, and T. V. Rakhimova, Plasma Phys. Rep. 42, 1146 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    K. V. Rudenko, A. V. Myakon’kikh, A. A. Orlikovsky, and A. N. Pustovit, Russ. Microelectron. 36, 14 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Sorokin
    • 1
    • 2
  • K. M. Gutorov
    • 1
  • M. D. Bolotov
    • 1
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Kotelnikov Institute of Radio Engineering and Electronics (Fryazino Branch)Russian Academy of SciencesFryazino, Moscow oblastRussia

Personalised recommendations