Advertisement

Physics of Atomic Nuclei

, Volume 80, Issue 11, pp 1692–1696 | Cite as

Application of the Haar Wavelet to the Analysis of Plasma and Atmospheric Fluctuations

  • S. A. Maslov
  • A. A. Kharchevsky
  • V. A. Smirnov
Gas Discharge and Plasma Physics
  • 24 Downloads

Abstract

The parameters of turbulence measured by means of a Doppler reflectometer at the plasma periphery in an L-2M stellarator and in atmospheric vortices (typhoons and tornadoes) are investigated using the wavelet methods with involvement of the Haar function. The periods of time taken for the transition (a bound of parameters) to occur in the L-2M stellarator plasma and in atmospheric processes are estimated. It is shown that high-and low-frequency oscillations of certain parameters, in particular, pressure, that occur in atmospheric vortices decay or increase at different moments of time, whereas the density fluctuation amplitudes that occur in plasma at different frequencies vary in a synchronous manner.

Keywords

wavelet analysis plasma turbulence vortex parameter bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992).CrossRefMATHGoogle Scholar
  2. 2.
    B. Ph. van Milligen, E. Sanchez, T. Estrada, C. Hidalgo, B. Branas, et al., Phys. Plasmas 2, 3017 (2005).CrossRefGoogle Scholar
  3. 3.
    C. Salem, A. Mangeney, S. D. Bale, and P. Veltri, Astrophys. J. 702, 537 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    I. de Moortel and A. W. Hood, Astron. Astrophys. 363, 269 (2000).ADSGoogle Scholar
  5. 5.
    L. G. Bruskin, A. Mase, T. Tokuzawa, S. Kubota, N. Oyama, et al., Rev. Sci. Instrum. 70, 1052 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    N. K. Kharchev, G. M. Batanov, M. S. Berezhetskii, V. D. Borzosekov, O. I. Fedyanin, et al., Plasma Fusion Res. 6, 2402142 (2011).CrossRefGoogle Scholar
  7. 7.
    G. M. Batanov, V. I. Belousov, Yu. F. Bondar’, V. D. Borzosekov, D. G. Vasil’kov, et al., Plasma Phys. Rep. 39, 1088 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Maslov, D. G. Vasilkov, Yu. V. Kholnov, and N. N. Skvortsova, J. Phys.: Conf. Ser. 666, 012009 (2016).Google Scholar
  9. 9.
    N. M. Astaf’eva, Adv. Phys. Sci. 39, 1085 (1996).Google Scholar
  10. 10.
    D. V. Nalivkin, Hurricanes, Storms and Tornadoes. Geographical Specialities and Geological Activity (Nauka, Leningrad, 1969) [in Russian].Google Scholar
  11. 11.
    J. J. Lee, T. M. Samaras, and C. R. Young, https://ams.confex.com/ams/pdfpapers/81700.pdf.Google Scholar
  12. 12.
    Hurricane Irene August 26–27, 2011. http://www. weather.gov/mhx/Aug272011EventReview.Google Scholar
  13. 13.
    Land-Based Station Data. National Centers for Environmental Information (NCEI) formerly known as National Climatic Data Center (NCDC). www. ncdc.noaa.gov/data-access/land-based-station-data.Google Scholar
  14. 14.
    D. V. Malakhov, N. N. Skvortsova, A. K. Gorshenin, V. Yu. Korolev, A. Yu. Chirkov, et al., J. Math. Sci. 218, 208 (2016).MathSciNetCrossRefGoogle Scholar
  15. 15.
    N. N. Skvortsova, A. Y. Chirkov, A. A. Kharchevsky, D. V. Malakhov, A. K. Gorshenin, et al., J. Phys.: Conf. Ser. 666, 012007 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. A. Maslov
    • 1
    • 2
  • A. A. Kharchevsky
    • 3
  • V. A. Smirnov
    • 3
  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Technological University (MIREA), Radio Engineering and Telecommunication Systems InstituteMoscowRussia

Personalised recommendations