Advertisement

Physics of Atomic Nuclei

, Volume 80, Issue 11, pp 1697–1700 | Cite as

New Applications of Langmuir Probes

  • P. E. Masherov
  • A. F. Piskunkov
  • V. A. Riaby
  • V. P. Savinov
  • V. G. Yakunin
Gas Discharge and Plasma Physics
  • 15 Downloads

Abstract

In this work, two new possibilities for standard probe diagnostics are described. The first one can be used to study isotropic, collisionless low-pressure plasma in which the electron energy distribution function is close to a Maxwellian one. In such plasmas, the Boltzmann law, Bohm effect, and 3/2 power law are valid. Use of corresponding system of equations for cylindrical Langmuir probes allowed for measurements of probe sheath thicknesses and the mean ion mass. The solution of this task was provided by accurate probe diagnostics of inductive xenon plasma at pressure p = 2 mTorr that resulted in the determination of the Bohm coefficient CBCyl = 1.22. The second possibility of probe diagnostics includes a method and device for evaluation of ion current density to a wall under a floating potential using a radially movable plane wall Langmuir probe simulator. This measurement in the same xenon plasma served as the basis for development of an ion source in which the given wall was represented by an ion extracting electrode of the ion extraction grid system.

Keywords

plasma Boltzmann law Bohm effect 3/2 power law Langmuir probe RF inductive discharge antenna coil ferrite core 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bohm, in Characteristics of Electrical Discharges in Magnetic Fields, Ed. by A. Guthrie and R. K. Wakerling (McGraw-Hill, New York, Toronto, London, 1949).Google Scholar
  2. 2.
    O. V. Kozlov, Electrical Probe in Plasma (Atomizdat, Moscow, 1969), p. 20 [in Russian].Google Scholar
  3. 3.
    P. E. Masherov, V. A. Riaby, and V. A. Godyak, Rev. Sci. Instrum. 87, 02B926 (2016).Google Scholar
  4. 4.
    VGPS Probe System. www.plasmasensors.com.Google Scholar
  5. 5.
    V. A. Godyak and V. I. Demidov, J. Phys. D: Appl. Phys. 44, 233001 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Riaby, V. A. Obukhov, and P. E. Masherov, High Voltage Eng. 38 (Suppl.), 790 (2012).Google Scholar
  7. 7.
    V. A. Riaby and P. E. Masherov, Izv. Akad Nauk, Energet., No. 2, 46 (2016) [in Russian].Google Scholar
  8. 8.
    R. B. Piejak, V. A. Godyak, R. Garner, and B. M. Alexandrovich, J. Appl. Phys. 95, 3785 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    B. Nuhn and G. Peter, in Proceedings of the 13th International Conference on Phenomena in Ionized Gases, Berlin, Germany, 1977, Vol. 2, p. 97.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. E. Masherov
    • 1
  • A. F. Piskunkov
    • 1
  • V. A. Riaby
    • 1
  • V. P. Savinov
    • 2
  • V. G. Yakunin
    • 2
  1. 1.Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations