Advertisement

Physics of Atomic Nuclei

, Volume 80, Issue 11, pp 1635–1641 | Cite as

A Broadband Infrared Laser Source (2.5–17 μm) for Plasma Diagnostics

  • A. A. Ionin
  • I. O. Kinyaevskii
  • Yu. M. Klimachev
  • A. Yu. Kozlov
  • A. A. Kotkov
Reviews
  • 14 Downloads

Abstract

This paper presents the results of studies aimed at the creation of a hybrid laser system which is composed of a gas lasers and a nonlinear crystal and appreciably broadens and enriches the radiation spectrum of these lasers. A highly efficient conversion (37%) is attained when generating the second harmonic in a ZnGeP2 crystal owing to an increase in the peak power of CO laser radiation in the mode locking regime. The two-cascade conversion (generation of both sum and difference frequencies) of radiation of a broadband CO laser in the single sample of such nonlinear crystals as ZnGeP2 and AgGaSe2 is demonstrated. In this case, the radiation spectrum is broadened by nearly a factor of two, and the number of detected spectral lines grows by a factor of four. The use of a comparatively simple laser system of gas-discharge CO and CO2 lasers to conversion in AgGaSe2 results in laser radiation tunable over a set of narrow spectral lines within a range from 2.5 to 16.6 μm (more than two and a half octaves).

Keywords

plasma diagnostics hybrid laser system double-cascade conversion nonlinear crystal gas lasers generation of sum and difference frequencies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Kuznetsov, Doctoral (Phys. Math.) Dissertation (NRNU MEPhI, Moscow, 2012) [in Russian].Google Scholar
  2. 2.
    T. Kondoh, Y. Kawano, A. E. Costley, et al., Rev. Sci. Instrum. 75, 3420 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    D. R. Baker, Rev. Sci. Instrum. 51, 1304 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    S. Iseni, S. Reuter, and K.-D. Weltmann, J. Phys. D: Appl. Phys. 47, 075203 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. M. Klimachev, J. Phys.: Conf. Ser. 666, 012020 (2016).Google Scholar
  6. 6.
    A. A. Ionin, in Gas Lasers, Eds. by M. Endo and R. Walter (CRC, Boca Raton, FL, 2007), p.201.Google Scholar
  7. 7.
    A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, et al., Opt. Lett. 42, 498 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Ionin, Yu. M. Klimachev, A. Kozlov, et al., Quantum Electron. 36, 1153 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. M. Andreev, A. A. Ionin, I. O. Kinyaevskiy, et al., Quantum Electron. 43, 139 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, et al., Opt. Lett. 41, 777 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, et al., Opt. Lett. 41, 2390 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, and A. A. Kotkov, Opt. Spectrosc. 119, 356 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, et al., Opt. Commun. 363, 26 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, et al., Opt. Atmosf. Okeana 29, 888 (2016) [in Russian].Google Scholar
  15. 15.
    A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, et al., Opt. Commun. 285, 2707 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Ionin, J. Guo, L.-M. Zhang, et al., Laser Phys. Lett 8, 723 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, et al., Opt. Commun. 345, 163 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. M. Andreev, O. V. Budilova, A. A. Ionin, et al., Opt. Lett. 40, 2997 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    D. O’Brien, R. Graves, V. D. Zvorykin, et al., Fiz. Khim. Obrab.Mater., No. 1, 47 (2005) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Ionin
    • 1
  • I. O. Kinyaevskii
    • 1
  • Yu. M. Klimachev
    • 1
  • A. Yu. Kozlov
    • 1
  • A. A. Kotkov
    • 1
  1. 1.Laboratory of Gas Lasers, Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations