Advertisement

Physics of Atomic Nuclei

, Volume 80, Issue 11, pp 1642–1646 | Cite as

Efficiency of Tungsten Dust Collection of Different Types of Dust Particles by Electrostatic Probe

  • L. B. Begrambekov
  • A. N. Voityuk
  • A. M. Zakharov
  • O. A. Bidlevich
  • E. A. Vechshev
  • P. A. Shigin
  • J. Vayakis
  • M. Walsh
Materials and Technology for New Energy Sources
  • 19 Downloads

Abstract

Formation of dust particles and clusters is observed in almost every modern thermonuclear facility. Accumulation of dust in the next generation thermonuclear installations can dramatically affect the plasma parameters and lead to the accumulation of unacceptably large amounts of tritium. Experiments on collection of dust particles by a model of electrostatic probe developed for collection of metallic dust at ITER are described in the article. Experiments on the generation of tungsten dust consisting of flakes formed during the destruction of tungsten layers formed on the walls of the plasma chamber sputtered from the surface of the tungsten target by plasma ions were conducted. The nature of dust degassing at elevated temperatures and the behavior of dust in an electric field were studied. The results obtained are compared with the results of the experiments with dust consisting of crystal particles of simple geometric shapes. The effectiveness of collection of both types of dust using the model of an electrostatic probe is determined.

Keywords

plasma diagnostics dust dust particles electrostatic field ITER 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. B. Begrambekov, A. N. Voityuk, and A. M. Zakharov, J. Phys.: Conf. Ser. 741, 012004 (2016).Google Scholar
  2. 2.
    L. B. Begrambekov, A. A. Gordeev, A. V. Grunin, A. E. Evsin, et al., in Proceedings of the 7th International School-Conference of Young Researchers and Specialists on Interaction of Hydrogen Isotopes with Structural Materials IHISM’11, Oct. 24–28, 2011, Zvenigorod, Russia, p.323.Google Scholar
  3. 3.
    S. I. Krasheninnikov et al., Plasma Phys. Contrib. F 53, 083001 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    R. H. Zalavutdinov, A. E. Gorodezky, and A. Zaharov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 1, 39 (2011) [in Russian].Google Scholar
  5. 5.
    A. Rondeau et al., J. Nucl. Mater. 463, 873 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. B. Begrambekov
    • 1
  • A. N. Voityuk
    • 1
  • A. M. Zakharov
    • 1
  • O. A. Bidlevich
    • 1
  • E. A. Vechshev
    • 2
  • P. A. Shigin
    • 2
  • J. Vayakis
    • 2
  • M. Walsh
    • 2
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.ITER OrganizationSt Paul-Lez-DuranceFrance

Personalised recommendations