Skip to main content

Investigation of temperature dependence of neutron yield and electron screening potential for the d(d, n)3He reaction proceeding in deuterides ZrD2 and TiD2

Abstract

The temperature dependence of the enhancement factor for the dd reaction proceeding in TiD2 and ZrD2 is investigated. The experiments were carried out at the Hall pulsed ion accelerator (INP, Polytechnic University, Tomsk, Russia) in the deuteron energy interval 7.0–12.0 keV and at temperatures ranging from 20 to 200°C. The values obtained for the electron screening potentials indicate that the dd reaction enhancement factor does not depend on the target temperature in the range 20–200°C. This result contradicts the conclusions drawn by the LUNA Collaboration from their work.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. L. Friar, in Proceedings of the International Conference on the Theory of Few Body and Quark-Hadronic System, Dubna, 1987, Preprint No. D4-87-692, JINR (Dubna, 1987), p. 170.

  2. 2.

    G. S. Chulick, Y. E. Kim, R. A. Rice, and M. Rabinowitz, Nucl. Phys. A 551, 255 (1993).

    ADS  Article  Google Scholar 

  3. 3.

    J. Torre and B. Goulard, Phys. Rev. C 28, 529 (1983).

    ADS  Article  Google Scholar 

  4. 4.

    J. L. Friar, B. F. Gibson, H. C. Jean, and G. L. Payne, Phys. Rev. Lett. 66, 1827 (1991).

    ADS  Article  Google Scholar 

  5. 5.

    V. F. Kharchenko, M.A. Navrotsky, P. A. Katerinchuk, Yad. Fiz. 55, 86 (1992).

    Google Scholar 

  6. 6.

    J. N. Bahcall and M. H. Pinsonneault, Rev. Mod. Phys. 64, 885 (1992).

    ADS  Article  Google Scholar 

  7. 7.

    V. B. Belyaev, A. Bertin, Vit. M. Bystritskii, et al., Nukleonika 40(2), 85 (1995).

    Google Scholar 

  8. 8.

    C. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988).

    Google Scholar 

  9. 9.

    G. Gamow and E. Teller, Phys. Rev. 53, 608 (1938).

    ADS  Article  Google Scholar 

  10. 10.

    H. A. Bethe, Phys. Rev. 55, 434 (1939).

    ADS  MATH  Article  Google Scholar 

  11. 11.

    E. E. Salpeter, Phys. Rev. 88, 547 (1952).

    ADS  Article  Google Scholar 

  12. 12.

    H.-S. Bosch and G. M. Hale, Nuclear Fusion 32, 611 (1992) and references therein.

    ADS  Article  Google Scholar 

  13. 13.

    M. Rambaut, Phys. Lett. A 164, 155 (1992).

    ADS  Article  Google Scholar 

  14. 14.

    T. E. Liolios, Eur. Phys. J. A 9, 287 (2001).

    ADS  Article  Google Scholar 

  15. 15.

    A. Huke, K. Czerski, and P. Heide, Nucl. Phys. A 719, C279 (2003).

    ADS  Article  Google Scholar 

  16. 16.

    A. Huke, K. Czerski, P. Heide, et al., Phys. Rev. C 78, 015803 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    H. Yuki et al., JETP Lett. 68, 823 (1998) [Pis’ma Zh. Eksp. Teor. Fiz. 68, 785 (1998)].

    ADS  Article  Google Scholar 

  18. 18.

    U. Greife, F. Gorris, M. Junker, et al., Z. Phys. A 351, 107 (1995).

    ADS  Article  Google Scholar 

  19. 19.

    M. Aliotta, F. Raiola, G. Gyürky, et al., Nucl. Phys. A 690, 790 (2001).

    ADS  Article  Google Scholar 

  20. 20.

    J. Kasagi, H. Yuki, T. Baba, et al., J. Phys. Soc. Jpn. 71, 2881 (2002).

    ADS  Article  Google Scholar 

  21. 21.

    K. Czerski, A. Huke, P. Heide, and G. Ruprecht, Eur. Phys. J. A 27, 83 (2006).

    ADS  Article  Google Scholar 

  22. 22.

    F. Raiola, L. Gang, C. Bonomo, et al., Eur. Phys. J. A 19, 283 (2004).

    ADS  Article  Google Scholar 

  23. 23.

    F. Raiola, B. Burchard, Zs. Fülöp, et al., Eur. Phys. J. A 27, 79 (2006) and references therein.

    ADS  Article  Google Scholar 

  24. 24.

    A. Huke, K. Czerski, and P. Heide, Nucl. Instrum. Methods B 256, 599 (2007) and references therein.

    ADS  Article  Google Scholar 

  25. 25.

    K. Czerski, A. Huke, P. Heide, and G. Ruprecht, Europhys. Lett. 68, 363 (2004).

    ADS  Article  Google Scholar 

  26. 26.

    C. Bonomo, G. Fiorentini, Z. Fülöp, et al., Nucl. Phys. A 719, C37 (2003).

    ADS  Article  Google Scholar 

  27. 27.

    K. Czerski, A. Huke, L. Martin, et al., J. Phys. G 35, 014012 (2008).

    ADS  Article  Google Scholar 

  28. 28.

    S. Engstler, A. Krauss, K. Neldner, et al., Phys. Lett. B 202, 179 (1988).

    ADS  Article  Google Scholar 

  29. 29.

    H. Costantini, A. Formicola, M. Junker, et al., Phys. Lett. B 482, 43 (2000).

    ADS  Article  Google Scholar 

  30. 30.

    U. Schröder et al., Nucl. Instrum. Methods B 40–41, 466 (1989).

    Article  Google Scholar 

  31. 31.

    G. Ruprecht, K. Czerski, D. Bemmerer, et al., Phys. Rev. C 70, 025803 (2004).

    ADS  Article  Google Scholar 

  32. 32.

    E. E. Salpeter, Aust. J. Phys. 7, 373 (1954).

    ADS  MATH  Article  Google Scholar 

  33. 33.

    H. J. Assenbaum, K. Langanke, and C. Rolfs, Z. Phys. A 327, 461 (1987).

    ADS  Google Scholar 

  34. 34.

    F. Raiola, P. Migliardi, G. Gyürky, et al., Eur. Phys. J. A 13, 377 (2002).

    ADS  Article  Google Scholar 

  35. 35.

    K. Czerski, A. Huke, A. Biller, et al., Europhys. Lett. 54, 449 (2001).

    ADS  Article  Google Scholar 

  36. 36.

    S. Ichimaru, Rev.Mod. Phys. 65, 255 (1993).

    ADS  Article  Google Scholar 

  37. 37.

    J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Suppl. Ser. 165, 400 (2006).

    ADS  Article  Google Scholar 

  38. 38.

    V. M. Bystritsky et al., Preprint No. E15-2010-142, JINR (Dubna, 2010); Yad. Fiz. 75, 56 (2012).

  39. 39.

    F. Raiola et al., J. Phys. G 31, 1141 (2005).

    ADS  Article  Google Scholar 

  40. 40.

    F. Raiola, PhD Thesis, Ruhr-Universität Bochum (2006).

  41. 41.

    V. M. Bystritsky et al., to be published in Nucl. Phys. (2012).

  42. 42.

    W. M. Mueller et al., Metal Hydrides (Academic Press, New York; London, 1968).

    Google Scholar 

  43. 43.

    Vit. Bystritskii, V. Bystritsky, S. A. Chaikovsky, et al., Kerntechnik 66, 42 (2001).

    Google Scholar 

  44. 44.

    V.M. Bystritsky, V. V. Gerasimov, A. R. Krylov, et al., Phys. Atom. Nucl. 66, 1683 (2003).

    ADS  Article  Google Scholar 

  45. 45.

    V. M. Bystritsky, Vit. M. Bystritskii, L. D. Butakov, et al., in Proceedings of the XI International Seminar on Electromagnetic Interactions of Nuclei (EMIN-2006), Institute for Nuclear Research RAS, Moscow, Russia, 21–24 Sept. 2006, p. 202.

  46. 46.

    L. D. Butakov, G. N. Dudkin, B. A. Nechaev, et al., Bull. Rus. Acad. Sci. Phys. 71, 1640 (2007).

    Article  Google Scholar 

  47. 47.

    V.M. Bystritsky, V. V. Gerasimov, A. R. Krylov, et al., Eur. Phys. J. A 36, 151 (2008) and references therein.

    ADS  Article  Google Scholar 

  48. 48.

    Vit. M. Bystritskii, V. M. Bystritsky, S. A. Chaikovsky, et al., Phys. Atom. Nucl. 64, 855 (2001).

    ADS  Article  Google Scholar 

  49. 49.

    V.M. Bystritsky, V. M. Grebenyuk, S. S. Parzhitski, et al., Laser Part. Beams 18, 325 (2000).

    ADS  Article  Google Scholar 

  50. 50.

    V. M. Bystritsky and F. M. Pen’kov, Phys. Atom. Nucl. 66, 75 (2003).

    ADS  Article  Google Scholar 

  51. 51.

    V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, et al., Nucl. Instrum.Methods A 565, 864 (2006).

    ADS  Article  Google Scholar 

  52. 52.

    Plasma Accelerators, Ed. by L. A. Artsimovich (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  53. 53.

    Vit. Bystritskii, E. Garate, N. Rostoker, et al., J. Appl. Phys. 96, 1249 (2004).

    ADS  Article  Google Scholar 

  54. 54.

    B. A. Nechaev, G. N. Dudkin, V. L. Kaminsky, et al., in Proceedings of the 15th International Symposium on High-Current Electronics, Tomsk, Sept. 21–26, 2008 (Publishing House of the IAO SB RAS, Tomsk, 2008), p. 148.

    Google Scholar 

  55. 55.

    B. A. Nechaev, G. N. Dudkin, V. N. Padalko, et al., see [54], p. 151.

    Google Scholar 

  56. 56.

    A. P. Kobzev, J. Huran, D. Maczka, and M. Turek, Vacuum 83, S124 (2009).

    Article  Google Scholar 

  57. 57.

    Wei-Kan Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry (Academic Press, New York; San Francisco; London, 1978).

    Google Scholar 

  58. 58.

    H. Yagi, K. Tanida, K. Nishimura, et al., Jpn. J. Appl. Phys. 34, L577 (1995).

    ADS  Article  Google Scholar 

  59. 59.

    Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. P. Seah (Wiley, New York, 1983).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. M. Bystritsky.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bystritsky, V.M., Bystritskii, V.M., Dudkin, G.N. et al. Investigation of temperature dependence of neutron yield and electron screening potential for the d(d, n)3He reaction proceeding in deuterides ZrD2 and TiD2 . Phys. Atom. Nuclei 75, 913–922 (2012). https://doi.org/10.1134/S1063778812080054

Download citation

Keywords

  • Atomic Nucleus
  • Neutron Yield
  • Rutherford Backscatter Spectrometry
  • Electron Screening
  • Deuteride