Skip to main content
Log in

Anisotropic Magnetoabsorption of Light in Cobalt Ferrite and Its Correlation with Magnetostriction

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The absorption spectra of a CoFe2O4 ferrite spinal single crystal, which has a giant magnetostriction, demonstrate an absorption edge at 1.18 eV and a fine structure of impurity absorption bands in the IR region. In the Voight geometry, the crystal is shown to exhibit magnetoabsorption, which is related to the field-induced changes in the fundamental absorption edge and impurity absorption bands. The magnetoabsorption (magnetotransmission and magnetoreflection of light) is anisotropic and depends on the magnetic field direction with respect to the crystallographic axes of the crystal. The light magnetoabsorption is found to be related to the magnetostriction of the crystal. The magnetostriction of CoFe2O4 is shown to significantly contribute to its magnetic anisotropy constant, which is accompanied by changes in the electronic spectrum and optical properties when a magnetic field is applied. The high magnetoabsorption in CoFe2O4 in a relatively low magnetic field makes it possible to use this magnetic material for the development of a new trend in spintronics, namely, strain-magnetooptics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Roy, Proc. SPIE 9167, 9167OU (2014).

  2. A. B. Ustinov, P. I. Kolkov, A. A. Nikitin, B. A. Kalinikos, Y. K. Fetisov, and G. Srinivasan, Tech. Phys. 56, 821 (2011).

    Article  Google Scholar 

  3. A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys. Usp. 61, 1175 (2018).

    Article  ADS  Google Scholar 

  4. J. Ferre and G. A. Gehring, Rep. Prog. Phys. 47, 513 (1984).

    Article  ADS  Google Scholar 

  5. A. S. Moskvin, D. G. Latypov, and V. G. Gudkov, Sov. Phys. Solid State 30, 235 (1988).

    Google Scholar 

  6. E. A. Gan’shina, A. V. Zenkov, G. S. Krinchik, et al., Sov. Phys. JETP 72, 154 (1991).

    Google Scholar 

  7. Yu. P. Sukhorukov, A. V. Telegin, N. G. Bebenin, A. P. Nosov, V. D. Bessonov, A. A. Buchkevich, and E. I. Patrakov, J. Exp. Theor. Phys. 126, 106 (2018).

    Article  ADS  Google Scholar 

  8. Yu. P. Sukhorukov, A. V. Telegin, N. G. Bebenin, et al., Solid State Commun. 263, 27 (2017).

    Article  ADS  Google Scholar 

  9. Yu. P. Sukhorukov, A. V. Telegin, N. G. Bebenin, A. A. Buchkevich, A. P. Nosov, and V. D. Bessonov, JETP Lett. 108, 48 (2018).

    Article  ADS  Google Scholar 

  10. A. V. Telegin, Yu. P. Sukhorukov, V. D. Bessonov, and S. V. Naumov, Tech. Phys. Lett. 45, 601 (2019).

    Article  ADS  Google Scholar 

  11. B. S. Holinsworth, D. Mazumdar, H. Sims, et al., Appl. Phys. Lett. 103, 082406 (2013).

    Article  ADS  Google Scholar 

  12. R. C. Rai, S. Wilser, M. Guminiak, et al., Appl. Phys. A 106, 207 (2012).

    Article  ADS  Google Scholar 

  13. C. Himcinschi, I. Vrejoiu, G. Salvan, et al., J. Appl. Phys. 113, 084101 (2013).

    Article  ADS  Google Scholar 

  14. A. Rahman, A. Gafur, and A. R. Sarker, Int. J. Inn. Res, Adv. Eng. 2, 99 (2015).

    Google Scholar 

  15. G. Subias, V. Cuartero, J. Garsia, et al., Phys. Rev. B 100, 104420 (2019).

    Article  ADS  Google Scholar 

  16. M. I. Danil’kevich, G. V. Litvinivich, and V. I. Naumenko, J. Appl. Spectrosc. 24, 38 (1976).

    Article  ADS  Google Scholar 

  17. R. Bujakiewicz-Koronska, L. Hetmanczyk, B. Garbarz-Gios, et al., Centr. Eur. J. Phys. 10, 1137 (2012).

    ADS  Google Scholar 

  18. R. D. Waldron, Phys. Rev. 99, 1727 (1955).

    Article  ADS  Google Scholar 

  19. Yu. P. Sukhorukov, N. G. Bebenin, A. V. Telegin, et al., Phys. Met. Metallogr. 119, 1167 (2018).

    Article  ADS  Google Scholar 

  20. R. M. Bozorth, E. F. Tilden, and A. J. Wiliams, Phys. Rev. 99, 1788 (1955).

    Article  ADS  Google Scholar 

  21. C. Kittel, Mod. Phys. 21, 541 (1949).

    Article  ADS  Google Scholar 

  22. G. S. Krinchik, Physics of Magnetic Phenomena (Mosk. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  23. Z. Li, E. S. Fisher, J. Z. Liu, and M. V. Nevitt, J. Mater. Sci. 26, 2621 (1991).

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed in terms of a state assignment of the Ministry of Science and Higher Education of the Russian Federation (project Spin no. AAAA-A18-118020290104-2).

The magnetic measurements were carried out in the Center for Collective Use of the Institute of Metal Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Telegin.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telegin, A.V., Sukhorukov, Y.P. & Bebenin, N.G. Anisotropic Magnetoabsorption of Light in Cobalt Ferrite and Its Correlation with Magnetostriction. J. Exp. Theor. Phys. 131, 970–975 (2020). https://doi.org/10.1134/S1063776120120109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120120109

Navigation