Anisotropic Magnetoabsorption of Light in Cobalt Ferrite and Its Correlation with Magnetostriction

Abstract

The absorption spectra of a CoFe2O4 ferrite spinal single crystal, which has a giant magnetostriction, demonstrate an absorption edge at 1.18 eV and a fine structure of impurity absorption bands in the IR region. In the Voight geometry, the crystal is shown to exhibit magnetoabsorption, which is related to the field-induced changes in the fundamental absorption edge and impurity absorption bands. The magnetoabsorption (magnetotransmission and magnetoreflection of light) is anisotropic and depends on the magnetic field direction with respect to the crystallographic axes of the crystal. The light magnetoabsorption is found to be related to the magnetostriction of the crystal. The magnetostriction of CoFe2O4 is shown to significantly contribute to its magnetic anisotropy constant, which is accompanied by changes in the electronic spectrum and optical properties when a magnetic field is applied. The high magnetoabsorption in CoFe2O4 in a relatively low magnetic field makes it possible to use this magnetic material for the development of a new trend in spintronics, namely, strain-magnetooptics.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    K. Roy, Proc. SPIE 9167, 9167OU (2014).

  2. 2

    A. B. Ustinov, P. I. Kolkov, A. A. Nikitin, B. A. Kalinikos, Y. K. Fetisov, and G. Srinivasan, Tech. Phys. 56, 821 (2011).

    Article  Google Scholar 

  3. 3

    A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys. Usp. 61, 1175 (2018).

    ADS  Article  Google Scholar 

  4. 4

    J. Ferre and G. A. Gehring, Rep. Prog. Phys. 47, 513 (1984).

    ADS  Article  Google Scholar 

  5. 5

    A. S. Moskvin, D. G. Latypov, and V. G. Gudkov, Sov. Phys. Solid State 30, 235 (1988).

    Google Scholar 

  6. 6

    E. A. Gan’shina, A. V. Zenkov, G. S. Krinchik, et al., Sov. Phys. JETP 72, 154 (1991).

    Google Scholar 

  7. 7

    Yu. P. Sukhorukov, A. V. Telegin, N. G. Bebenin, A. P. Nosov, V. D. Bessonov, A. A. Buchkevich, and E. I. Patrakov, J. Exp. Theor. Phys. 126, 106 (2018).

    ADS  Article  Google Scholar 

  8. 8

    Yu. P. Sukhorukov, A. V. Telegin, N. G. Bebenin, et al., Solid State Commun. 263, 27 (2017).

    ADS  Article  Google Scholar 

  9. 9

    Yu. P. Sukhorukov, A. V. Telegin, N. G. Bebenin, A. A. Buchkevich, A. P. Nosov, and V. D. Bessonov, JETP Lett. 108, 48 (2018).

    ADS  Article  Google Scholar 

  10. 10

    A. V. Telegin, Yu. P. Sukhorukov, V. D. Bessonov, and S. V. Naumov, Tech. Phys. Lett. 45, 601 (2019).

    ADS  Article  Google Scholar 

  11. 11

    B. S. Holinsworth, D. Mazumdar, H. Sims, et al., Appl. Phys. Lett. 103, 082406 (2013).

    ADS  Article  Google Scholar 

  12. 12

    R. C. Rai, S. Wilser, M. Guminiak, et al., Appl. Phys. A 106, 207 (2012).

    ADS  Article  Google Scholar 

  13. 13

    C. Himcinschi, I. Vrejoiu, G. Salvan, et al., J. Appl. Phys. 113, 084101 (2013).

    ADS  Article  Google Scholar 

  14. 14

    A. Rahman, A. Gafur, and A. R. Sarker, Int. J. Inn. Res, Adv. Eng. 2, 99 (2015).

    Google Scholar 

  15. 15

    G. Subias, V. Cuartero, J. Garsia, et al., Phys. Rev. B 100, 104420 (2019).

    ADS  Article  Google Scholar 

  16. 16

    M. I. Danil’kevich, G. V. Litvinivich, and V. I. Naumenko, J. Appl. Spectrosc. 24, 38 (1976).

    ADS  Article  Google Scholar 

  17. 17

    R. Bujakiewicz-Koronska, L. Hetmanczyk, B. Garbarz-Gios, et al., Centr. Eur. J. Phys. 10, 1137 (2012).

    ADS  Google Scholar 

  18. 18

    R. D. Waldron, Phys. Rev. 99, 1727 (1955).

    ADS  Article  Google Scholar 

  19. 19

    Yu. P. Sukhorukov, N. G. Bebenin, A. V. Telegin, et al., Phys. Met. Metallogr. 119, 1167 (2018).

    ADS  Article  Google Scholar 

  20. 20

    R. M. Bozorth, E. F. Tilden, and A. J. Wiliams, Phys. Rev. 99, 1788 (1955).

    ADS  Article  Google Scholar 

  21. 21

    C. Kittel, Mod. Phys. 21, 541 (1949).

    ADS  Article  Google Scholar 

  22. 22

    G. S. Krinchik, Physics of Magnetic Phenomena (Mosk. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  23. 23

    Z. Li, E. S. Fisher, J. Z. Liu, and M. V. Nevitt, J. Mater. Sci. 26, 2621 (1991).

    ADS  Article  Google Scholar 

Download references

Funding

This work was performed in terms of a state assignment of the Ministry of Science and Higher Education of the Russian Federation (project Spin no. AAAA-A18-118020290104-2).

The magnetic measurements were carried out in the Center for Collective Use of the Institute of Metal Physics.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Telegin.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Telegin, A.V., Sukhorukov, Y.P. & Bebenin, N.G. Anisotropic Magnetoabsorption of Light in Cobalt Ferrite and Its Correlation with Magnetostriction. J. Exp. Theor. Phys. 131, 970–975 (2020). https://doi.org/10.1134/S1063776120120109

Download citation