Redistribution of the Stochastic Kinetic Energy in Bilayer Systems of Nonidentical Charged Particles


Conditions of energy exchange in bilayer ensembles including two separated fractions of nonidentical particles with different sizes, charges, and temperatures have been studied. Processes of the redistribution of the stochastic energy between different fractions of particles with different temperatures in such systems have been numerically analyzed. The redistribution of the stochastic energy over the degrees of freedom has been considered.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasma (Experiment and Theory) (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  2. 2

    Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).

    Google Scholar 

  3. 3

    A. Ivlev, G. Morfill, H. Lowen, and C. P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids (World Scientific, Singapore, 2012).

    Google Scholar 

  4. 4

    Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1974).

    Google Scholar 

  5. 5

    A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Processes (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  6. 6

    A. V. Filippov and I. N. Derbenev, J. Exp. Theor. Phys. 123, (2016).

  7. 7

    O. S. Vaulina, Zh. Eksp. Teor. Fiz. 149, 218 (2016).

    Google Scholar 

  8. 8

    O. S. Vaulina, J. Exp. Theor. Phys. 124, 839 (2017).

    ADS  Article  Google Scholar 

  9. 9

    O. S. Vaulina and S. V. Kaufman, Plasma Phys. Rep. 46, 791 (2020).

    ADS  Article  Google Scholar 

  10. 10

    G. A. Hebner, M. E. Riley, and K. E. Greenberg, Phys. Rev. E 66, 046407 (2002).

    ADS  Article  Google Scholar 

  11. 11

    H. Thomas, G. Morfill, and V. Demmel, Phys. Rev. Lett. 73, 652 (1994).

    ADS  Article  Google Scholar 

  12. 12

    J. B. Pieper, J. Goree, and R. A. Quinn, Phys. Rev. E 54, 5636 (1996).

    ADS  Article  Google Scholar 

  13. 13

    A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 53, 2757 (1996).

    ADS  Article  Google Scholar 

  14. 14

    O. S. Vaulina, E. V. Vasilieva, O. F. Petrov, and V. E. Fortov, Phys. Scr. 84, 025503 (2011).

    ADS  Article  Google Scholar 

  15. 15

    O. S. Vaulina, E. V. Vasil’eva, and R. A. Timirkhanov, Plasma Phys. Rep. 37, 1035 (2011).

    ADS  Article  Google Scholar 

  16. 16

    H. Totsuji, C. Totsuji, and K. Tsuruta, Phys. Rev. E 64, 066402 (2001).

    ADS  Article  Google Scholar 

  17. 17

    H. Totsuji, T. Kishimoto, Y. Inoue, et al., Phys. Lett. A 221, 215 (1996).

    ADS  Article  Google Scholar 

  18. 18

    H. Totsuji, T. Kishimoto, and C. Totsuji, Phys. Rev. Lett. 78, 3113 (1997).

    ADS  Article  Google Scholar 

  19. 19

    O. S. Vaulina, K. G. Adamovich, and I. E. Dranzhevskii, Plasma Phys. Rep. 31, 562 (2005).

    ADS  Article  Google Scholar 

  20. 20

    O. S. Vaulina, X. G. Adamovich, and S. V. Vladimirov, Phys. Scr. 79, 035501 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Yu. V. Gerasimov, A. P. Nefedov, V. A. Sinel’shchikov, and V. E. Fortov, Tech. Phys. Lett. 24, 774 (1998).

    ADS  Article  Google Scholar 

  22. 22

    V. E. Fortov, E. A. Nefedov, V. A. Sinel’shchikov, A. D. Usachev, and A. V. Zobnin, Phys. Lett. A 267, 179 (2000).

    ADS  Article  Google Scholar 

  23. 23

    O. S. Vaulina, S. A. Khrapak, O. F. Petrov, and A. P. Nefedov, Phys. Rev. E 60, 5959 (1999).

    ADS  Article  Google Scholar 

  24. 24

    R. A. Quinn and J. Goree, Phys. Rev. E 61, 3033 (2000).

    ADS  Article  Google Scholar 

  25. 25

    O. S. Vaulina, S. A. Khrapak, A. A. Samarian, and O. F. Petrov, Phys. Scr. 84, 229 (2000).

    Article  Google Scholar 

  26. 26

    O. S. Vaulina, A. P. Nefedov, O. F. Petrov, and V. E. Fortov, J. Exp. Theor. Phys. 91, 1147 (2000).

    ADS  Article  Google Scholar 

  27. 27

    V. E. Fortov, O. S. Vaulina, O. F. Petrov, V. I. Molotkov, A. V. Chernyshev, A. M. Lipaev, G. Morfill, H. Thomas, H. Rotermell, S. A. Khrapak, Yu. P. Semenov, A. I. Ivanov, S. K. Krikalev, and Yu. P. Gidzenko, J. Exp. Theor. Phys. 97, 704 (2003).

    ADS  Article  Google Scholar 

  28. 28

    O. S. Vaulina, Europhys. Lett. 115, 10007 (2016).

    ADS  Article  Google Scholar 

  29. 29

    S. G. Psakh’e and K. P. Zol’nikov, Fiz. Mezomekh., No. 11, 39 (2008).

  30. 30

    G. E. Morfill, H. M. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys. Rev. Lett. 83, 1598 (1999).

    ADS  Article  Google Scholar 

  31. 31

    E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

Download references


This work was supported in part by the Russian Foundation for Basic Research (project no. 18-38-20175) and by the Presidium of the Russian Academy of Sciences.

Author information



Corresponding author

Correspondence to O. S. Vaulina.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaulina, O.S., Kaufman, S.V. & Lisina, I.I. Redistribution of the Stochastic Kinetic Energy in Bilayer Systems of Nonidentical Charged Particles. J. Exp. Theor. Phys. 131, 1026–1031 (2020).

Download citation