Shear Modulus Relaxation and Thermal Effects in a Zr65Cu15Ni10Al10 Metallic Glass after Inhomogeneous Plastic Deformation

Abstract

The shear modulus and enthalpy relaxation in a deformed Zr65Cu15Ni10Al10 metallic glass has been investigated. It has been established that inhomogeneous plastic deformation leads to a decrease in the unrelaxed shear modulus and a change in its relaxation kinetics upon subsequent heat treatment. An analysis of the calorimetric data shows that inhomogeneous plastic deformation leads to the accumulation of an additional internal energy in the metallic glass, which, however, causes no shear modulus relaxation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    F. Spaepen, Acta Metal. 25, 407 (1977).

    Article  Google Scholar 

  2. 2

    A. S. Argon, Acta Metal. 27, 47 (1979).

    Article  Google Scholar 

  3. 3

    K. M. Flores, E. Sherer, A. Bharathula, H. Chen, and Y. C. Jean, Acta Mater. 55, 3403 (2007).

    ADS  Article  Google Scholar 

  4. 4

    K. Hajlaoui, T. Benameur, G. Vaughan, and A. R. Yavari, Scr. Mater. 51, 843 (2004).

    Article  Google Scholar 

  5. 5

    Y. M. Chen, T. Ohkubo, T. Mukai, and K. Hono, J. Mater. Res. 24, 1 (2009).

    ADS  Article  Google Scholar 

  6. 6

    J. J. Gilman, J. Appl. Phys. 44, 675 (1973).

    ADS  Article  Google Scholar 

  7. 7

    J. J. Gilman, J. Appl. Phys. 46, 1625 (1975).

    ADS  Article  Google Scholar 

  8. 8

    V. A. Khonik and L. V. Spivak, Acta Mater. 44, 367 (1996).

    ADS  Article  Google Scholar 

  9. 9

    A. Yu. Vinogradov and V. A. Khonik, Philos. Mag. 84, 2147 (2004).

    ADS  Article  Google Scholar 

  10. 10

    R. Maaß, K. Samwer, W. Arnold, and C. A. Volkert, Appl. Phys. Lett. 105, 171902 (2014).

    ADS  Article  Google Scholar 

  11. 11

    A. Vinogradov, M. Seleznev, and I. S. Yasnikov, Scr. Mater. 130, 138 (2017).

    Article  Google Scholar 

  12. 12

    M. Seleznev and A. Vinogradov, Metals 10, 374 (2020).

    Article  Google Scholar 

  13. 13

    A. L. Greer, Y. Q. Cheng, and E. Ma, Mater. Sci. Eng. R 74, 71 (2013).

    Article  Google Scholar 

  14. 14

    G. Z. Ma, K. K. Song, B. A. Sun, Z. Y. Yan, U. Kühn, D. Chen, and J. Eckert, J. Mater. Sci. 48, 6825 (2013).

    ADS  Article  Google Scholar 

  15. 15

    S. V. Khonik, L. D. Kaverin, N. P. Kobelev, N. T. N. Nguyen, A. V. Lysenko, M. Y. Yazvitsky, and V. A. Khonik, J. Non-Cryst. Sol. 354, 3896 (2008).

    Google Scholar 

  16. 16

    J. W. Liu, Q. P. Cao, L. Y. Chen, X. D. Wang, and J. Z. Jiang, Acta Mater. 58, 4827 (2010).

    ADS  Article  Google Scholar 

  17. 17

    S. Scudino, B. Jerliu, K. B. Surreddi, U. Kühn, and J. Eckert, J. Alloys Compd. 509S, S128 (2011).

    Article  Google Scholar 

  18. 18

    M. H. Lee, K. S. Lee, J. Das, J. Thomas, U. Kühn, and J. Eckert, Scr. Mater. 620, 678 (2010).

    Article  Google Scholar 

  19. 19

    Yu. P. Mitrofanov, M. Peterlechner, S. V. Divinski, and G. Wilde, Phys. Rev. Lett. 112, 135901 (2014).

    ADS  Article  Google Scholar 

  20. 20

    J. Bünz, T. Brink, K. Tsuchiya, F. Meng, G. Wilde, and K. Albe, Phys. Rev. Lett. 112, 135501 (2014).

    ADS  Article  Google Scholar 

  21. 21

    H. Shintani and H. Tanaka, Nat. Mater. 7, 870 (2008).

    ADS  Article  Google Scholar 

  22. 22

    Yu. P. Mitrofanov, M. Peterlechner, I. Binkowski, M. Yu. Zadorozhnyy, I. S. Golovin, S. V. Divinski, and G. Wilde, Acta Mater. 90, 318 (2015).

    ADS  Article  Google Scholar 

  23. 23

    H. Rösner, M. Peterlechner, and C. Kübel, Ultramicroscopy 142, 1 (2014).

    Article  Google Scholar 

  24. 24

    V. Schmidt, H. Rösner, M. Peterlechner, G. Wilde, and P. M. Voyles, Phys. Rev. Lett. 115, 035501 (2015).

    ADS  Article  Google Scholar 

  25. 25

    Y. Shao, Y. Kefu, and X. Liu, Appl. Phys. Lett. 103, 171901 (2013).

    ADS  Article  Google Scholar 

  26. 26

    A. N. Vasiliev, T. N. Voloshok, A. V. Granato, D. M. Joncich, Yu. P. Mitrofanov, and V. A. Khonik, Phys. Rev. B 80, 172102 (2009).

    ADS  Article  Google Scholar 

  27. 27

    W. H. Wang, Progr. Mater. Sci. 57, 487 (2012).

    Article  Google Scholar 

  28. 28

    J. Dyre, Rev. Mod. Phys. 78, 953 (2006).

    ADS  Article  Google Scholar 

  29. 29

    A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    ADS  Article  Google Scholar 

  30. 30

    A. V. Granato, Eur. Phys. J. B 87, 18 (2014).

    ADS  Article  Google Scholar 

  31. 31

    N. P. Kobelev and V. A. Khonik, J. Non-Cryst. Sol. 427, 184 (2015).

    Google Scholar 

  32. 32

    A. S. Makarov, Y. P. Mitrofanov, G. V. Afonin, N. P. Kobelev, and V. A. Khonik, Intermetallics 87, 1 (2017).

    Article  Google Scholar 

  33. 33

    A. N. Vasil’ev, Yu. P. Gaidukov, M. I. Kaganov, E. A. Popova, and V. B. Fiks, Sov. J. Low Temp. Phys. 15, 91 (1989).

    Google Scholar 

  34. 34

    G. V. Afonin, Yu. P. Mitrofanov, A. S. Makarov, N. P. Kobelev, and V. A. Khonik, J. Non-Cryst. Sol. 475, 48 (2017).

    Google Scholar 

  35. 35

    Yu. P. Mitrofanov, V. A. Khonik, and A. N. Vasil’ev, J. Exp. Theor. Phys. 108, 830 (2009).

    ADS  Article  Google Scholar 

  36. 36

    Yu. P. Mitrofanov, G. V. Izotova, G. V. Afonin, S. V. Khonik, N. P. Kobelev, A. A. Kaloyan, and V. A. Khonik, Phys. Solid State 54, 2145 (2012).

    ADS  Article  Google Scholar 

  37. 37

    V. A. Khonik, Yu. P. Mitrofanov, A. S. Makarov, G. V. Afonin, and A. N. Tsyplakov, Phys. Solid State 57, 1574 (2015).

    ADS  Article  Google Scholar 

  38. 38

    U. Harms, O. Jin, and R. B. Schwarz, J. Non-Cryst. Sol. 317, 200 (2003).

    Google Scholar 

  39. 39

    V. A. Khonik, Metals 5, 504 (2015).

    Article  Google Scholar 

  40. 40

    Yu. P. Mitrofanov, A. S. Makarov, V. A. Khonik, A. V. Granato, D. M. Joncich, and S. V. Khonik, Appl. Phys. Lett. 101, 131903 (2012).

    ADS  Article  Google Scholar 

  41. 41

    Yu. P. Mitrofanov, D. P. Wang, W. H. Wang, and V. A. Khonik, J. Alloys Compd. 677, 80 (2016).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-62-46003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. V. Afonin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afonin, G.V., Mitrofanov, Y.P., Kobelev, N.P. et al. Shear Modulus Relaxation and Thermal Effects in a Zr65Cu15Ni10Al10 Metallic Glass after Inhomogeneous Plastic Deformation. J. Exp. Theor. Phys. 131, 582–588 (2020). https://doi.org/10.1134/S1063776120090125

Download citation