Skip to main content
Log in

Effect of Impurities on the Oxygen Adsorption Properties on the NiTi(110) Surface

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of 3d–5d elements on the oxygen adsorption energy on the NiTi(110) surface has been studied by the projector augmented-waves method within density functional theory. It is shown that almost all elements, except for a few elements of the end of d periods, lead to an increase in the adsorption energy if they substitute for nickel. On the contrary, the substitutional impurities in the titanium sublattice lower this energy. Based on the analysis of the electronic characteristics of the surface with impurities, it has been found that an increase/decrease in the oxygen adsorption energy on NiTi(110) correlates with a change in the ionic contribution to the mechanism of oxygen bonding with the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. A. Shabalovskaya, J. Anderegg, and J. Van Humbeeck, Acta Biomater. 4, 447 (2008).

    Article  Google Scholar 

  2. H. Tian, D. Schryvers, D. Liu, et al., Acta Biomater. 7, 892 (2011).

    Article  Google Scholar 

  3. S. E. Kulkova, A. V. Bakulin, Q. M. Hu, et al., Phys. B (Amsterdam, Neth.) 426, 118 (2013).

  4. A. V. Bakulin, T. I. Spiridonova, and S. E. Kulkova, Comput. Mater. Sci. 148, 1 (2018).

    Article  Google Scholar 

  5. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Transients and Martensitic Transformations (UrO RAN, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  6. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  7. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  8. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  9. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  10. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  11. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  12. E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed. (Butterworth–Heinemen, London, 1992).

    Google Scholar 

  13. M. Nolan and S. A. M. Tofail, Biomaterials 31, 3439 (2010).

    Article  Google Scholar 

  14. A. V. Bakulin, S. E. Kulkova, Q. M. Hu, and R. Yang, J. Exp. Theor. Phys. 120, 257 (2015).

    Article  ADS  Google Scholar 

  15. M. Pohl, T. Glogowski, S. Kühn, et al., Mater. Sci. Eng. A 481482, 123 (2008).

  16. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).

    ADS  Google Scholar 

  17. N. G. Limas and T. A. Manz, RSC Adv. 6, 45727 (2016).

    Article  Google Scholar 

  18. T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).

    Article  Google Scholar 

  19. A. V. Bakulin and S. E. Kulkova, J. Exp. Theor. Phys. 127, 1046 (2018).

    Article  ADS  Google Scholar 

  20. S. E. Kulkova, A. V. Bakulin, Q. M. Hu, et al., Mater. Today: Proc. 2S, 615 (2015).

    Google Scholar 

  21. B. Hammer and J. K. Nørskov, Surf. Sci. 343, 211 (1995).

    Article  ADS  Google Scholar 

  22. V. E. Egorushkin, S. E. Kul’kova, N. V. Mel’nikova, and A. N. Ponomarev, J. Exp. Theor. Phys. 101, 350 (2005).

    Article  ADS  Google Scholar 

  23. R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993).

    Article  Google Scholar 

  24. S. Maintz, V. L. Deringer, A. L. Tchougreeff, et al., J. Comput. Chem. 37, 1030 (2016).

    Article  Google Scholar 

  25. S. E. Kulkova, A. V. Bakulin, S. S. Kulkov, et al., Phys. Scr. 90, 094010 (2015).

    Article  ADS  Google Scholar 

  26. F. P. Ping, Q. M. Hu, A. V. Bakulin, et al., Intermet. 68, 57 (2016).

    Article  Google Scholar 

  27. G. S. Firstov, R. G. Vitchev, H. Kumar, et al., Biomaterials 23, 4863 (2008).

    Article  Google Scholar 

Download references

Funding

This work was supported by project III.23.2.8 of the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, and partly by the Russian Foundation for Basic Research (grant no. 18-03-00064_a) and Tomsk State University Competitiveness Improvement Program. Calculations were carried out using a supercomputer SKIF-Cyberia in Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bakulin.

Additional information

Translated by A. Zeigarnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, A.V., Kulkova, S.E. Effect of Impurities on the Oxygen Adsorption Properties on the NiTi(110) Surface. J. Exp. Theor. Phys. 129, 413–420 (2019). https://doi.org/10.1134/S1063776119070033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070033

Navigation