Skip to main content
Log in

Unusual Behavior of the Coercive Field in a (CoFeB)x(LiNbOy)100 –x Nanocomposite with a High Content of Magnetic Ions in an Insulating Matrix

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature behavior of the coercive field Hc(T) and the magnetic anisotropy in (CoFeB)x(LiNbOy)100 –x nanocomposite films with a ferromagnetic alloy content x = 33–48 at % near the metal–insulator transition (xc ≈ 42 at %) have been studied by the magnetometry and ferromagnetic resonance methods. The films were ensembles of CoFe granules with lateral sizes of 2–4 nm, which are highly elongated (up to 10–15 nm) in the nanocomposite growth direction and embedded in a LiNbOy matrix with a high content of magnetic Fe2+ and Co2+ ions (up to 3 × 1022 cm–3). A nonmonotonic behavior of Hc(T), viz., a sharp minimum at a temperature TF ≈ 50 K close to the blocking temperature (\(T_{b}^{*}\) ≈ 70 K) of the granule magnetic moment, has been detected in samples with x < 42 at %. The effective field of the perpendicular growth anisotropy (0.4–0.8 kOe) turns out to be an order of magnitude lower than the field of the granule shape anisotropy (about 7 kOe) and increases with x. The revealed peculiarities are explained by the fact that, apart from the ferromagnetic intergranular exchange interaction in an infinite cluster, the surface anisotropy effects involving magnetic ions in a thin layer adjacent to the cluster and responsible for the surface interaction fluctuations play a big role in the investigated percolation nanocomposites, enhancing the nanocomposite demagnetization at TTF ~ \(T_{b}^{*}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Bedanta, T. Eimüller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, and P. P. Freitas, Phys. Rev. Lett. 98, 176601 (2007).

    Article  ADS  Google Scholar 

  2. S. Bedanta and W. Kleemann, J. Phys. D 42, 013001 (2009).

    Article  ADS  Google Scholar 

  3. A. A. Timopheev, I. Bdikin, A. F. Lozenko, O. V. Stognei, A. V. Sitnikov, A. V. Los, and N. A. Sobolev, J. Appl. Phys. 111, 123915 (2012).

    Article  ADS  Google Scholar 

  4. O. G. Udalov and I. S. Beloborodov, Phys. Rev. B 95, 045427 (2017).

    Article  ADS  Google Scholar 

  5. V. N. Kondratyev and H. O. Lutz, Phys. Rev. Lett. 81, 4508 (1998).

    Article  ADS  Google Scholar 

  6. M. Ye. Zhuravlev, E. Y. Tsymbal, and A. V. Vedyayev, Phys. Rev. Lett. 94, 026806 (2005).

    Article  ADS  Google Scholar 

  7. J. P. Velev, M. Ye. Zhuravlev, K. D. Belashchenko, S. S. Jaswal, E. Y. Tsymbal, T. Katayama, and S. Yuasa, IEEE Trans. Magn. 43, 2770 (2007).

    Article  ADS  Google Scholar 

  8. V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).

    Article  ADS  Google Scholar 

  9. V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, and A. B. Granovsky, J. Magn. Magn. Mater. 459, 197 (2018).

    Article  ADS  Google Scholar 

  10. A. V. Vedyayev, N. V. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).

    Article  ADS  Google Scholar 

  11. L. Neel, Ann. Geophys. 5, 99 (1949);

    Google Scholar 

  12. J. Phys. Soc. Jpn. 17 (Suppl. B1), 676 (1961).

  13. A. A. Timopheev, S. M. Ryabchenko, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, V. A. Stephanovich, A. M. Grishin, and M. Munakata, J. Appl. Phys. 105, 083905 (2009).

    Article  ADS  Google Scholar 

  14. V. M. Kalita, A. A. Timofeev, and S. M. Ryabchenko, J. Exp. Theor. Phys. 112, 441 (2011).

    Article  ADS  Google Scholar 

  15. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126, 353 (2018).

    Article  ADS  Google Scholar 

  16. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano- and Microheterogeneous Systems (BINOM, Labor. Znanii, Moscow, 2012) [in Russian].

    Google Scholar 

  17. A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, S. V. Kapelnitsky, V. V. Rylkov, V. V. Tugushev, G. V. Prutskov, O. A. Novodvorskii, E. A. Cherebilo, E. T. Kulatov, Y. Wang, and S. Zhou, Europhys. Lett. 115, 37008 (2016).

    Article  ADS  Google Scholar 

  18. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).

    Article  ADS  Google Scholar 

  19. K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).

    Article  ADS  Google Scholar 

  20. E. De Biasi, C. A. Ramos, and R. D. Zysler, Phys. Rev. B 65, 144416 (2002).

    Article  ADS  Google Scholar 

  21. R. D. Zysler, H. Romero, C. A. Ramos, E. de Biasi, and D. Fiorani, J. Magn. Magn. Mater. 266, 233 (2003).

    Article  ADS  Google Scholar 

  22. J. A. Osborn, Phys. Rev. 67, 351 (1945).

    Article  ADS  Google Scholar 

  23. Y.-T. Chen and S. M. Xie, J. Nanomater. 2012 (2012). doi https://doi.org/10.1155/2012/486284

  24. Handbook of Magnetic Measurements, Ed. by S. Tumanski (CRC, Boca Raton, FL, 2011), p. 382.

    Google Scholar 

  25. A. A. Timofeev, S. M. Ryabchenko, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, O. V. Stognei, and A. V. Sitnikov, Phys. Solid State 53, 494 (2011).

    Article  ADS  Google Scholar 

  26. J. Dubowik, Phys. Rev. B 54, 1088 (1996).

    Article  ADS  Google Scholar 

  27. S. A. Vyzulin, E. V. Lebedeva, D. A. Lysak, and N. E. Ser’ev, Bull. Russ. Acad. Sci.: Phys. 74, 1687 (2010).

    Article  Google Scholar 

  28. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  29. M. A. W. Schoen, J. Lucassen, H. T. Nembach, T. J. Silva, B. Koopmans, C. H. Back, and J. M. Shaw, Phys. Rev. B 95, 134410 (2017).

    Article  ADS  Google Scholar 

  30. A. A. Timofeev, S. M. Ryabchenko, A. F. Lozenko, P. A. Trotsenko, O. V. Stognei, A. V. Sitnikov, and S. F. Avdeev, J. Low Temp. Phys. 33, 974 (2007).

    Article  Google Scholar 

  31. E. de Biasi, R. D. Zysler, C. A. Ramos, H. Romero, and D. Fiorani, Phys. Rev. B 71, 104408 (2005).

    Article  ADS  Google Scholar 

  32. A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Federal Agency for Scientific Organizations (contract no. 007-03-2018-415) with regard to the “synthesis of (CoFeB)x(LiNbOy)100 –x films” and the Russian Foundation for Basic Research (project nos. 16-07-00657, 18-07-00772, 18-07-00756, 18-07-00729, 17-47-500273, 16-07-00798, 18-37-00267, 15-29-01171) with regard to the “investigation of magnetization and electrophysical properties of produced nanocomposite films.” The precision studies of coercitivity were supported by the National Research Center “Kurchatov Institute” (order no. 1713) using the equipment of the resource center of electrophysical methods.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Rylkov or A. B. Drovosekov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rylkov, V.V., Drovosekov, A.B., Taldenkov, A.N. et al. Unusual Behavior of the Coercive Field in a (CoFeB)x(LiNbOy)100 –x Nanocomposite with a High Content of Magnetic Ions in an Insulating Matrix. J. Exp. Theor. Phys. 128, 115–124 (2019). https://doi.org/10.1134/S1063776119010163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119010163

Navigation