Advertisement

Journal of Experimental and Theoretical Physics

, Volume 128, Issue 1, pp 115–124 | Cite as

Unusual Behavior of the Coercive Field in a (CoFeB)x(LiNbOy)100 –x Nanocomposite with a High Content of Magnetic Ions in an Insulating Matrix

  • V. V. RylkovEmail author
  • A. B. DrovosekovEmail author
  • A. N. Taldenkov
  • S. N. Nikolaev
  • O. G. Udalov
  • A. V. Emelyanov
  • A. V. Sitnikov
  • K. Yu. Chernoglazov
  • V. A. Demin
  • O. A. Novodvorskii
  • A. S. Vedeneev
  • A. S. Bugaev
ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • 32 Downloads

Abstract

The temperature behavior of the coercive field Hc(T) and the magnetic anisotropy in (CoFeB)x(LiNbOy)100 –x nanocomposite films with a ferromagnetic alloy content x = 33–48 at % near the metal–insulator transition (xc ≈ 42 at %) have been studied by the magnetometry and ferromagnetic resonance methods. The films were ensembles of CoFe granules with lateral sizes of 2–4 nm, which are highly elongated (up to 10–15 nm) in the nanocomposite growth direction and embedded in a LiNbOy matrix with a high content of magnetic Fe2+ and Co2+ ions (up to 3 × 1022 cm–3). A nonmonotonic behavior of Hc(T), viz., a sharp minimum at a temperature TF ≈ 50 K close to the blocking temperature (\(T_{b}^{*}\) ≈ 70 K) of the granule magnetic moment, has been detected in samples with x < 42 at %. The effective field of the perpendicular growth anisotropy (0.4–0.8 kOe) turns out to be an order of magnitude lower than the field of the granule shape anisotropy (about 7 kOe) and increases with x. The revealed peculiarities are explained by the fact that, apart from the ferromagnetic intergranular exchange interaction in an infinite cluster, the surface anisotropy effects involving magnetic ions in a thin layer adjacent to the cluster and responsible for the surface interaction fluctuations play a big role in the investigated percolation nanocomposites, enhancing the nanocomposite demagnetization at TTF ~ \(T_{b}^{*}\).

Notes

ACKNOWLEDGMENTS

This work was supported by the Federal Agency for Scientific Organizations (contract no. 007-03-2018-415) with regard to the “synthesis of (CoFeB)x(LiNbOy)100 –x films” and the Russian Foundation for Basic Research (project nos. 16-07-00657, 18-07-00772, 18-07-00756, 18-07-00729, 17-47-500273, 16-07-00798, 18-37-00267, 15-29-01171) with regard to the “investigation of magnetization and electrophysical properties of produced nanocomposite films.” The precision studies of coercitivity were supported by the National Research Center “Kurchatov Institute” (order no. 1713) using the equipment of the resource center of electrophysical methods.”

REFERENCES

  1. 1.
    S. Bedanta, T. Eimüller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, and P. P. Freitas, Phys. Rev. Lett. 98, 176601 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    S. Bedanta and W. Kleemann, J. Phys. D 42, 013001 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Timopheev, I. Bdikin, A. F. Lozenko, O. V. Stognei, A. V. Sitnikov, A. V. Los, and N. A. Sobolev, J. Appl. Phys. 111, 123915 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    O. G. Udalov and I. S. Beloborodov, Phys. Rev. B 95, 045427 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    V. N. Kondratyev and H. O. Lutz, Phys. Rev. Lett. 81, 4508 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    M. Ye. Zhuravlev, E. Y. Tsymbal, and A. V. Vedyayev, Phys. Rev. Lett. 94, 026806 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Velev, M. Ye. Zhuravlev, K. D. Belashchenko, S. S. Jaswal, E. Y. Tsymbal, T. Katayama, and S. Yuasa, IEEE Trans. Magn. 43, 2770 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, and A. B. Granovsky, J. Magn. Magn. Mater. 459, 197 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Vedyayev, N. V. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).ADSCrossRefGoogle Scholar
  11. 11a.
    L. Neel, Ann. Geophys. 5, 99 (1949);Google Scholar
  12. 11b.
    J. Phys. Soc. Jpn. 17 (Suppl. B1), 676 (1961).Google Scholar
  13. 12.
    A. A. Timopheev, S. M. Ryabchenko, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, V. A. Stephanovich, A. M. Grishin, and M. Munakata, J. Appl. Phys. 105, 083905 (2009).ADSCrossRefGoogle Scholar
  14. 13.
    V. M. Kalita, A. A. Timofeev, and S. M. Ryabchenko, J. Exp. Theor. Phys. 112, 441 (2011).ADSCrossRefGoogle Scholar
  15. 14.
    V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126, 353 (2018).ADSCrossRefGoogle Scholar
  16. 15.
    S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano- and Microheterogeneous Systems (BINOM, Labor. Znanii, Moscow, 2012) [in Russian].Google Scholar
  17. 16.
    A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, S. V. Kapelnitsky, V. V. Rylkov, V. V. Tugushev, G. V. Prutskov, O. A. Novodvorskii, E. A. Cherebilo, E. T. Kulatov, Y. Wang, and S. Zhou, Europhys. Lett. 115, 37008 (2016).ADSCrossRefGoogle Scholar
  18. 17.
    I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).ADSCrossRefGoogle Scholar
  19. 18.
    K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).ADSCrossRefGoogle Scholar
  20. 19.
    E. De Biasi, C. A. Ramos, and R. D. Zysler, Phys. Rev. B 65, 144416 (2002).ADSCrossRefGoogle Scholar
  21. 20.
    R. D. Zysler, H. Romero, C. A. Ramos, E. de Biasi, and D. Fiorani, J. Magn. Magn. Mater. 266, 233 (2003).ADSCrossRefGoogle Scholar
  22. 21.
    J. A. Osborn, Phys. Rev. 67, 351 (1945).ADSCrossRefGoogle Scholar
  23. 22.
    Y.-T. Chen and S. M. Xie, J. Nanomater. 2012 (2012). doi  https://doi.org/10.1155/2012/486284
  24. 23.
    Handbook of Magnetic Measurements, Ed. by S. Tumanski (CRC, Boca Raton, FL, 2011), p. 382.Google Scholar
  25. 24.
    A. A. Timofeev, S. M. Ryabchenko, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, O. V. Stognei, and A. V. Sitnikov, Phys. Solid State 53, 494 (2011).ADSCrossRefGoogle Scholar
  26. 25.
    J. Dubowik, Phys. Rev. B 54, 1088 (1996).ADSCrossRefGoogle Scholar
  27. 26.
    S. A. Vyzulin, E. V. Lebedeva, D. A. Lysak, and N. E. Ser’ev, Bull. Russ. Acad. Sci.: Phys. 74, 1687 (2010).CrossRefGoogle Scholar
  28. 27.
    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973) [in Russian].Google Scholar
  29. 28.
    M. A. W. Schoen, J. Lucassen, H. T. Nembach, T. J. Silva, B. Koopmans, C. H. Back, and J. M. Shaw, Phys. Rev. B 95, 134410 (2017).ADSCrossRefGoogle Scholar
  30. 29.
    A. A. Timofeev, S. M. Ryabchenko, A. F. Lozenko, P. A. Trotsenko, O. V. Stognei, A. V. Sitnikov, and S. F. Avdeev, J. Low Temp. Phys. 33, 974 (2007).CrossRefGoogle Scholar
  31. 30.
    E. de Biasi, R. D. Zysler, C. A. Ramos, H. Romero, and D. Fiorani, Phys. Rev. B 71, 104408 (2005).ADSCrossRefGoogle Scholar
  32. 31.
    A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. V. Rylkov
    • 1
    • 5
    • 6
    Email author
  • A. B. Drovosekov
    • 2
    Email author
  • A. N. Taldenkov
    • 1
  • S. N. Nikolaev
    • 1
  • O. G. Udalov
    • 3
  • A. V. Emelyanov
    • 1
  • A. V. Sitnikov
    • 1
    • 4
  • K. Yu. Chernoglazov
    • 1
  • V. A. Demin
    • 1
  • O. A. Novodvorskii
    • 7
  • A. S. Vedeneev
    • 5
  • A. S. Bugaev
    • 5
    • 8
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscowRussia
  3. 3.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  4. 4.Voronezh State Technical UniversityVoronezhRussia
  5. 5.Kotel’nikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of SciencesFryazinoRussia
  6. 6.Institute of Theoretical and Applied Electrodynamics, Russian Academy of SciencesMoscowRussia
  7. 7.Institute for Problems of Laser and Information Technologies, Russian Academy of Sciences, Branch of Federal Research Center “Crystallography and Photonics”ShaturaRussia
  8. 8.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations