Advertisement

Journal of Experimental and Theoretical Physics

, Volume 128, Issue 1, pp 105–114 | Cite as

Electron, Phonon, and Superconducting Properties of Yttrium and Sulfur Hydrides under High Pressures

  • K. S GrishakovEmail author
  • N. N. DegtyarenkoEmail author
  • E. A. MazurEmail author
ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • 29 Downloads

Abstract

We have analyzed the electron, phonon, and superconducting properties of binary hydrides YH6, H3S, YH10, UH10, and CaH10, as compared to the properties of ternary hydride YS4H4 using a unified physical and computational approach to determining the stability range and the superconducting transition temperature. The normal and superconducting characteristics of ternary hydride YS4H4 at high pressure are calculated. The results for ternary hydride YS4H4 are compared with the properties of YH6, H3S, YH10, UH10, and CaH10 compounds.

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation under the program of improving competitiveness of the Nuclear Research University MEPhI (2018). The research was performed using facilities of the Collective Usage Center “Complex of simulation and processing of data obtained on mega-class research setups” at the National Research Center “Kurchatov Institute” (subsidized by the Ministry of Education and Science, identifier RFMEFI62117X0016), http://ckp.nrcki.ru/.

REFERENCES

  1. 1.
    D. Duan, Y. Liu, Y. Ma, et al., Natl. Sci. Rev. 4, 121 (2017).Google Scholar
  2. 2.
    H. Wang, S. T. John, K. Tanaka, et al., Proc. Natl. Acad. Sci. U.S.A. 109, 6463 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    P. G. Hou, X. S. Zhao, F. B. Tian, et al., RSC Adv. 5, 5096 (2015).CrossRefGoogle Scholar
  4. 4.
    X. L. Jin, X. Meng, Z. He, et al., Proc. Natl. Acad. Sci. U.S.A. 107, 9969 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J. Feng, W. Grochala, T. Jaron, et al., Phys. Rev. Lett. 96, 017006 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Cheng, C. Zhang, T. T. Wang, et al., Sci. Rep. 5, 16475 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    Y. B. Ma, D. F. Duan, D. Li, et al., arXiv:1506.03889.Google Scholar
  8. 8.
    D. F. Duan, Y. X. Liu, F. B. Tian, et al., Sci. Rep. 4, 6968 (2014).CrossRefGoogle Scholar
  9. 9.
    S. T. Zhang, Y. C. Wang, J. R. Zhang, et al., Sci. Rep. 5, 15433 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Li, J. Hao, H. Liu, et al., Sci. Rep. 5, 09948 (2015).CrossRefGoogle Scholar
  11. 11.
    A. P. Drozdov, M. I. Eremets, and I. A. Troyan, arXiv:1412.0460.Google Scholar
  12. 12.
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, et al., Nature (London, U.K.) 525, 73 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    M. Einaga, M. Sakata, T. Ishikawa, et al., Nat. Phys. 12, 835 (2016).CrossRefGoogle Scholar
  14. 14.
    A. P. Drozdov, M. I. Eremets, and I. A. Troyan, arXiv:1508.06224.Google Scholar
  15. 15.
    A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    F. Spedding and A. Daan, Rare-Earth Metals (Metallurgiya, Moscow, 1965) [in Russian].Google Scholar
  17. 17.
    G. M. Eliashberg, Sov. Phys. JETP 12, 1000 (1960).Google Scholar
  18. 18a.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009);Google Scholar
  19. 18b.
    J. Phys.: Condens. Matter 29, 465901 (2017).Google Scholar
  20. 19.
    V. N. Grebenev and E. A. Mazur, Sov. J. Low Temp. Phys. 13, 270 (1987).Google Scholar
  21. 20.
    N. N. Degtyarenko and E. A. Mazur, J. Exp. Theor. Phys. 121, 250 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations