Advertisement

Magnification Effects in Scanning Tunneling Microscopy: the Role of Surface Radicals

  • R. ZhachukEmail author
  • J. Coutinho
SOLIDS AND LIQUIDS
  • 20 Downloads

Abstract

Scanning tunneling microscopy (STM) is a fundamental tool for determination of the surface atomic structure. However, the interpretation of high resolution microscopy images is not straightforward. In this paper we provide a physical insight on how STM images can suggest atomic locations which are distinctively different from the real ones. This effect should be taken into account when interpreting high-resolution STM images obtained on surfaces with directional bonds. It is shown that spurious images are formed in the presence of polarized surface radicals showing a pronounced angle with respect to the surface normal. This issue has been overlooked within the surface science community and often disregarded by experimentalists working with STM. Without loss of generality, we illustrate this effect by the magnification observed for pentamer-like structures on (110), (113), and (331) surfaces of silicon and germanium.

REFERENCES

  1. 1.
    J. Myslivecek, F. Dvorák, A. Strózecka, B. Voigtländer, Phys. Rev. B 81, 245427 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    R. Zhachuk and J. Coutinho, Phys. Rev. B 84, 193405 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    W. A. Hofer, Progr. Surf. Sci. 71, 147 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    R. Zhachuk and S. Teys, Phys. Rev. B 95, 041412 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    J. Dąbrowski, H.-J. Müssig, and G. Wolff, Surf. Sci. 331–333, 1022 (1995).Google Scholar
  7. 7.
    T. An, M. Yoshimura, I. Ono, and K. Ueda, Phys. Rev. B 61, 3006 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Stekolnikov, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 70, 045305 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  13. 13.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instr. 78, 013705 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    K. Sakamoto, M. Setvin, K. Mawatari, P. E. J. Eriksson, K. Miki, and R. I. G. Uhrberg, Phys. Rev. B 79, 045304 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    S. A. Teys, JETP Lett. 105, 477 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    R. Zhachuk and J. Coutinho, JETP Lett. 106, 346 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    U. D. Schwarz, H. Haefke, P. Reimann, and H. J. Güntherodt, J. Microsc. 173, 183 (1994).CrossRefGoogle Scholar
  22. 22.
    A. Kirakosian, R. Bennewitz, J. N. Crain, T. Fauster, J.-L. Lin, D. Y. Petrovykh, and F. J. Himpsel, Appl. Phys. Lett. 79, 1608 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    S. A. Teys, K. N. Romanyuk, R. A. Zhachuk, and B. Z. Olshanetsky, Surf. Sci. 600, 4878 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    R. Zhachuk and S. Pereira, Phys. Rev. B 79, 077401 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    R. Zhachuk, S. Teys, J. Coutinho, M. J. Rayson, and P. R. Briddon, Appl. Phys. Lett. 105, 171602 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    R. A. Zhachuk, J. Coutinho, M. J. Rayson, and P. R. Briddon, J. Exp. Theor. Phys. 120, 632 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    G. Prévot, F. Leroy, B. Croset, Y. Garreau, A. Coati, and P. Müller, Surf. Sci. 606, 209 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    C. P. León, H. Drees, S. M. Wippermann, M. Marz, and R. Hoffmann-Vogel, J. Phys. Chem. Lett. 7, 426 (2016).CrossRefGoogle Scholar
  29. 29.
    C. P. León, H. Drees, S. M. Wippermann, M. Marz, and R. Hoffmann-Vogel, Phys. Rev. B 95, 245412 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).ADSGoogle Scholar
  31. 31.
    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).ADSCrossRefGoogle Scholar
  32. 32.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).ADSCrossRefGoogle Scholar
  33. 33.
    R. Zhachuk, S. Teys, and J. Coutinho, J. Chem. Phys. 138, 224702 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    R. Zhachuk, J. Coutinho, A. Dolbak, V. Cherepanov, and B. Voigtländer, Phys. Rev. B 96, 085401 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    S. García-Gil, A. García, N. Lorente, and P. Ordejón, Phys. Rev. B 79, 075441 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    R. Zhachuk, J. Coutinho, K. Palotás, J. Chem. Phys. (submitted).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.I3N, Department of Physics, University of AveiroAveiroPortugal

Personalised recommendations