Journal of Experimental and Theoretical Physics

, Volume 128, Issue 1, pp 98–104 | Cite as

Spin Crossover and Magnetic Properties of Ba-Substituted Cobaltites

  • I. O. TroyanchukEmail author
  • M. V. Bushinsky
  • V. V. Sikolenko
  • C. Ritter


The dependence of the properties of the La0.45Ba0.55CoO3 – δ and La0.4Ba0.6CoO3 – δ cobaltites on the oxygen content has been studied. A decrease in the oxygen content leads to the stabilization of cobalt ions in the 3+ oxidation state and to a transition from a conducting state with positive exchange interaction to an antiferromagnetic insulating state with a long range magnetic order with decreasing temperature. Application of a magnetic field gradually transforms the antiferromagnetic state to the ferromagnetic one. The cubic lattice parameter is independent of temperature and an anomalous dependence of the magnetization, electrical conductivity, and magnetoresistance is treated within a spin crossover scenario. It is assumed that the high-temperature conducting phase and ferromagnetic clusters correspond to a collective intermediate spin state of cobalt ions, whereas the low-temperature antiferromagnetic phase corresponds to a mixed high-spin/low-spin state.



This work was supported by the Belarussian Foundation for Basic Research (project no. F17D-007).


  1. 1.
    N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    K. Knizek, Z. Jirak, J. Heitmanek, et al., J. Magn. Magn. Mater 322, 1221 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    C. Yin, Q. Lui, and R. Decourt, J. Sol. St. Chem. 184, 3228 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    M. W. Haverkort, Z. Hu, J. C. Cezar, et al., Phys. Rev. Lett. 97, 176405 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    D. P. Kozlenko, N. O. Golosova, Z. Jirak, et al., Phys. Rev. B 75, 064422 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    J. B. Coodenough, J. Phys. Chem. Sol. 6, 287 (1958).ADSCrossRefGoogle Scholar
  7. 7.
    P. Ganguly, P. S. Kurmar, P. N. Santhosh, et al., J. Phys.: Condens. Matter 6, 533 (1994).ADSGoogle Scholar
  8. 8.
    J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    D. Fuchs, C. Pinta, T. Schwarz, et al., Phys. Rev. B 75, 144402 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Long, Y. Kaneko, Sh. Ishiwata, et al., J. Phys.: Condens. Matter 23, 245601 (2011).ADSGoogle Scholar
  11. 11.
    P. Tong, J. Yu, Q. Huang, et al., Phys. Rev. Lett. 106, 156407 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    F. Fauth, E. Suard, and V. Caignaert, Phys. Rev. B 65, 060401(R) (2001).Google Scholar
  13. 13.
    T. Nakajima, M. Ichihara, and Y. Ueda, J. Phys. Soc. Jpn. 74, 1572 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    E. L. Rautama, P. Boullay, A. K. Kundu, et al., Chem. Mater. 20, 2742 (2008).CrossRefGoogle Scholar
  15. 15.
    I. O. Troyanchuk, D. V. Karpinsky, M. V. Bushinsky, V. Sikolenko, V. Efimov, and A. Cervellino, JETP Lett. 93, 139 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    I. O. Troyanchuk, M. V. Bushinsky, V. Sikolenko, et al., Eur. Phys. J. B 86, 435 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    D. V. Karpinsky, I. O. Troyanchuk, L. S. Lobanovsky, et al., J. Phys.: Condens. Matter 25, 316004 (2013).Google Scholar
  18. 18.
    T. Roisnel and J. Rodríguez-Carvajal, Mater. Sci. Forum 378–381, 118 (2001).Google Scholar
  19. 19.
    A. Muñoz, C. de la Calle, J. A. Alonso, et al., Phys. Rev. B 78, 054404 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • I. O. Troyanchuk
    • 1
    Email author
  • M. V. Bushinsky
    • 1
  • V. V. Sikolenko
    • 2
  • C. Ritter
    • 3
  1. 1.Scientific-Practical Materials Research Centre, National Academy of Sciences of BelarusMinskBelarus
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.Institut Laue LangevinGrenobleFrance

Personalised recommendations