Multifrequency Stimulated Raman Scattering on Rotational Transitions of Molecules

  • V. P. KochanovEmail author


The theory of multifrequency stimulated Raman scattering (SRS) of light on rotational transitions of molecules, which are simulated by a three-level quantum system, is developed. It is shown that the application of bichromatic pumping increases the scattered radiation spectrum width. The exact algebraic solution for the wave amplitudes is obtained in the simplest version of synchronous SRS on transitions with a negligibly low eigenfrequency. It is found that an increase in the ratio of the Raman transition frequency to the pump radiation frequency leads to predominance of the anti-Stokes scattering branch. The effect of wave asynchronism emerging due to linear and nonlinear dispersion of the medium as well as the phase difference of the pump waves on SRS is considered. All types of asynchronism narrow generated frequency spectrum and suppress the anti-Stokes scattering branch. Nonlinear dispersion ensures positive values of wave amplitudes due to phase jumps by π during the propagation of waves in a medium.



  1. 1.
    G. V. Venkin, G. M. Krochik, L. L. Kulyuk, et al., Sov. Phys. JETP 43, 873 (1976).ADSGoogle Scholar
  2. 2.
    D. Eimerl, R. S. Hargrove, and J. A. Paisner, Phys. Rev. Lett. 46, 651 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    T. Imasaka, S. Kawasaki, and N. Ishibashi, Appl. Phys. B 49, 389 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    T. Imasaka, T. Higashijima, S. Kawasaki, and N. Ishibashi, Appl. Opt. 29, 1727 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    S. Kawasaki, T. Imasaka, and N. Ishibashi, Appl. Phys. B 52, 211 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    S. Kawasaki, T. Imasaka, and N. Ishibashi, J. Opt. Soc. Am. B 8, 1461 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    D. Eimerl, W. L. Kruer, and A. M. Campbell, Comm. Plasma Phys. Control. Fusion 15, 85 (1992).Google Scholar
  8. 8.
    S. Yoshikawa and T. Imasaka, Opt. Commun. 96, 94 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    L. L. Losev and A. P. Lutsenko, Quantum Electron. 23, 919 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    N. G. Ivanov, V. F. Losev, and V. E. Prokop’ev, Opt. Atmosf. Okeana 12, 1056 (1999).Google Scholar
  11. 11.
    Kien Fam Le, J. Q. Liang, M. Katsuragawa, et al., Phys. Rev. A 60, 1562 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    V. P. Kochanov, Quantum Electron. 40, 1131 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Nauka, Moscow, 1977; Springer, Berlin, Heidelberg, 1989).Google Scholar
  14. 14.
    V. P. Kochanov and Yu. V. Bogdanova, J. Exp. Theor. Phys. 96, 202 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    V. P. Kochanov, J. Exp. Theor. Phys. 109, 913 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    V. P. Kochanov, Quantum Electron. 42, 111 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    V. P. Kochanov, A. N. Kuryak, M. M. Makogon, and I. S. Tyryshkin, Opt. Spectrosc. 101, 183 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    S. G. Rautian and B. M. Chernobrod, Sov. Phys. JETP 45, 705 (1977).ADSGoogle Scholar
  19. 19.
    S. G. Rautian and B. M. Chernobrod, Sov. Phys. JETP 51, 687 (1980).ADSGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  21. 21.
    F. R. Gantmacher, Matrix Theory (Nauka, Moscow, 1966; Chelsea, New York, 1960).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations