Skip to main content
Log in

Spectral–Dynamic Model of the Hot Plasma Layer Expansion

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a theoretical model describing the expansion of a plasma layer into vacuum for an arbitrary electron plasma component temperature. Comparison with the known limiting cases of the quasi-neutral outflow and the Coulomb explosion, as well as with the results of the 1D electrostatic simulation, has revealed a high accuracy of the proposed model in the description of the spectral–energy and spatial characteristics of ions accelerated during the plasma expansion. The procedure for obtaining the relations between the characteristics of accelerated ions and the laser pulse and target parameters is described with regard to qualitative predictions and the description of the results of numerical kinetic simulation and experiments on the laser and plasma acceleration of ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. R. Snavely, M. Key, S. Hatchett, et al., Phys. Rev. Lett. 85, 2945 (2000).

    Article  ADS  Google Scholar 

  2. I. J. Kim, K. H. Pae, I. W. Choi, et al., Phys. Plasmas 23, 070701 (2016).

    Article  ADS  Google Scholar 

  3. A. Higginson, R. J. Gray, M. King, et al., Nat. Commun. 9, 724 (2018).

    Article  ADS  Google Scholar 

  4. A. V. Brantov, E. A. Govras, V. F. Kovalev, et al., Phys. Rev. Lett. 116, 085004 (2016).

    Article  ADS  Google Scholar 

  5. A. V. Gurevich, L. V. Pariiskaya, and L. P. Pitaevskii, Sov. Phys. JETP 22, 449 (1965).

    ADS  Google Scholar 

  6. P. Mora, Phys. Rev. Lett. 90, 185002 (2003).

    Article  ADS  Google Scholar 

  7. M. Allen, P. Patel, A. Mackinnon, et al., Phys. Rev. Lett. 93, 265004 (2004).

    Article  ADS  Google Scholar 

  8. N. G. Basov, V. A. Boiko, V. A. Dement’ev, et al., Sov. Phys. JETP 24, 659 (1967).

    ADS  Google Scholar 

  9. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).

    Article  ADS  Google Scholar 

  10. H. Kiriyama, M. Mori, Y. Nakai, et al., Opt. Lett. 32, 2315 (2007).

    Article  ADS  Google Scholar 

  11. H. Kiriyama, M. Mori, Y. Nakai, et al., Opt. Commun. 282, 625 (2009).

    Article  ADS  Google Scholar 

  12. S. Fourmaux, S. Payeur, S. Buffechoux, et al., Opt. Express 19, 8486 (2011).

    Article  ADS  Google Scholar 

  13. A. Lévy, T. Ceccotti, P. D’Oliveira, et al., Opt. Lett. 32, 310 (2007).

    Article  ADS  Google Scholar 

  14. A. Lévy, T. Ceccotti, H. Popescu, et al., Eur. Phys. J. Spec. Top. 175, 111 (2009).

    Article  Google Scholar 

  15. A. Henig, S. Steinke, M. Schnürer, et al., Phys. Rev. Lett. 103, 245003 (2009).

    Article  ADS  Google Scholar 

  16. A. Henig, D. Kiefer, K. Markey, et al., Phys. Rev. Lett. 103, 045002 (2009).

    Article  ADS  Google Scholar 

  17. J. Braenzel, A. A. Andreev, K. Platonov, et al., Phys. Rev. Lett. 114, 124801 (2015).

    Article  ADS  Google Scholar 

  18. D. Kiefer, A. Henig, D. Jung, et al., Eur. Phys. J. D 55, 427 (2009).

    Article  ADS  Google Scholar 

  19. F. Dollar, T. Matsuoka, G. M. Petrov, et al., Phys. Rev. Lett. 107, 065003 (2011).

    Article  ADS  Google Scholar 

  20. A. Mackinnon, Y. Sentoku, P. Patel, et al., Phys. Rev. Lett. 88, 215006 (2002).

    Article  ADS  Google Scholar 

  21. J. Fuchs, P. Antici, E. d’Humières, et al., Nat. Phys. 2, 48 (2006).

    Article  Google Scholar 

  22. F. Dollar, C. Zulick, T. Matsuoka, et al., Phys. Plasmas 20, 056703 (2013).

    Article  ADS  Google Scholar 

  23. V. F. Kovalev, V. Yu. Bychenkov, and V. T. Tikhonchuk, J. Exp. Theor. Phys. 95, 226 (2002).

    Article  ADS  Google Scholar 

  24. D. Dorozhkina and V. Semenov, Phys. Rev. Lett. 81, 2691 (1998).

    Article  ADS  Google Scholar 

  25. Yu. V. Medvedev, Plasma Phys. Contr. Fusion 47, 1031 (2005).

    Article  ADS  Google Scholar 

  26. N. Iwata, K. Mima, Y. Sentoku, et al., Phys. Plasmas 24, 073111 (2017).

    Article  ADS  Google Scholar 

  27. V. Yu. Bychenkov and V. F. Kovalev, Quantum Electron. 35, 1143 (2005).

    Article  ADS  Google Scholar 

  28. M. Passoni and M. Lontano, Laser Part. Beams 22, 163 (2004).

    Article  ADS  Google Scholar 

  29. M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008).

    Article  ADS  Google Scholar 

  30. S. Betti, F. Ceccherini, F. Cornolti, et al., Plasma Phys. Control. Fusion 47, 521 (2005).

    Article  ADS  Google Scholar 

  31. E. A. Govras and V. Yu. Bychenkov, Bull. Lebedev Phys. Inst. 42, 176 (2015).

    Article  ADS  Google Scholar 

  32. A. V. Brantov, E. A. Govras, V. Yu. Bychenkov, et al., Phys. Rev. ST Accel. Beams 18, 021301 (2015).

    Article  ADS  Google Scholar 

  33. V. Yu. Bychenkov, A. V. Brantov, E. A. Govras, and V. F. Kovalev, Phys. Usp. 58, 71 (2015).

    Article  ADS  Google Scholar 

  34. V. Yu. Bychenkov, A. V. Brantov, and E. A. Govras, Plasma Phys. Control. Fusion 58, 034022 (2016).

    Article  ADS  Google Scholar 

  35. C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004).

    Article  ADS  Google Scholar 

  36. J. E. Crow, P. L. Auer, and J. E. Allen, J. Plasma Phys. 14, 65 (1975).

    Article  ADS  Google Scholar 

  37. L. Wickens, J. Allen, and P. Rumsby, Phys. Rev. Lett. 41, 243 (1978).

    Article  ADS  Google Scholar 

  38. Yu. I. Chutov and A. Yu. Kravchenko, Sov. J. Plasma Phys. 6, 151 (1980).

    ADS  Google Scholar 

  39. Yu. V. Medvedev, Plasma Phys. Control. Fusion 39, 291 (1997).

    Article  ADS  Google Scholar 

  40. S. Wilks, W. Kruer, M. Tabak, et al., Phys. Rev. Lett. 69, 1383 (1992).

    Article  ADS  Google Scholar 

  41. V. Yu. Bychenkov, V. N. Novikov, D. Batani, et al., Phys. Plasmas 11, 3242 (2004).

    Article  ADS  Google Scholar 

  42. E. A. Govras and V. Yu. Bychenkov, JETP Lett. 98, 70 (2013).

    Article  ADS  Google Scholar 

  43. A. V. Gurevich and A. P. Meshcherkin, Sov. Phys. JETP 53, 937 (1981).

    Google Scholar 

  44. J. E. Allen and M. Perego, Phys. Plasmas 21, 034504 (2014).

    Article  ADS  Google Scholar 

  45. Yu. V. Medvedev, Nonlinear Phenomena During Decays of Discontinuities in a Rarefied Plasma (Fizmatlit, Moscow, 2012), p. 344 [in Russian].

    Google Scholar 

  46. A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 38, 291 (1974).

    ADS  Google Scholar 

  47. A. V. Gurevich and K. P. Zybin, Sov. Phys. JETP 67, 1 (1988).

    Google Scholar 

  48. A. Kaplan, B. Dubetsky, and P. Shkolnikov, Phys. Rev. Lett. 91, 143401 (2003).

    Article  ADS  Google Scholar 

  49. V. F. Kovalev, K. I. Popov, V. Yu. Bychenkov, et al., Phys. Plasmas 14, 053103 (2007).

    Article  ADS  Google Scholar 

  50. K. I. Popov, V. Yu. Bychenkov, W. Rozmus, et al., Phys. Plasmas 17, 083110 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 17-12-01283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Govras.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govras, E.A., Bychenkov, V.Y. Spectral–Dynamic Model of the Hot Plasma Layer Expansion. J. Exp. Theor. Phys. 128, 133–157 (2019). https://doi.org/10.1134/S1063776118120154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118120154

Navigation