Advertisement

Molecular Dynamics Simulation of the Migration of Tilt Grain Boundaries in Ni and Ni3Al

  • G. M. PoletaevEmail author
  • I. V. Zorya
  • M. D. Starostenkov
  • R. Yu. Rakitin
  • P. Ya. Tabakov
SOLIDS AND LIQUIDS
  • 14 Downloads

Abstract

The migration of the 〈100〉 and 〈111〉 tilt boundaries in Ni and the Ni3Al intermetallic compound is studied by molecular dynamics simulation. The low-angle 〈100〉 boundaries in Ni and Ni3Al are shown to migrate much more slowly (by approximately two times at a temperature of 1700 K) that the 〈111〉 boundaries, which is related to different migration mechanisms of the 〈100〉 and 〈111〉 boundaries. The migration of the 〈100〉 boundaries is found to occur by the splitting of paired grain-boundary dislocations followed by a change of partner dislocations, which proceeds via the slip of split dislocations. The 〈111〉 tilt boundaries move according to a combined action of the following two mechanisms: the mechanism described above and the mechanism consisting in joint slip of paired grain-boundary dislocations, which have common slip planes in contrast to the grain-boundary dislocations in 〈100〉 boundaries. Since the joint slip of paired dislocations has a relatively low activation energy, the mobility of the 〈111〉 tilt boundaries is higher than that of the 〈100〉 boundaries. Our molecular dynamics studies demonstrate that the migration rate of analogous boundaries in Ni3Al is significantly lower than in Ni (by approximately three times at a temperature of 1700 K), which is partly caused by the additional energy consumed for the formation of a disordered region behind a migrating boundary in Ni3Al. Because of a relatively low boundary mobility in Ni3Al, the contribution of diffusion atomic displacements during boundary migration is higher as compared to Ni.

Notes

REFERENCES

  1. 1.
    G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC, Boca Raton, FL, 2009).CrossRefGoogle Scholar
  2. 2.
    R. W. Balluffi and J. W. Cahn, Acta Metall. 29, 493 (1981).CrossRefGoogle Scholar
  3. 3.
    M. Winning, A. D. Rollett, G. Gottstein, et al., Philos. Mag. 90, 3107 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Huang and F. J. Humphreys, Acta Mater. 47, 2259 (1999).CrossRefGoogle Scholar
  5. 5.
    Y. Huang and F. J. Humphreys, Mater. Chem. Phys. 132, 166 (2012).CrossRefGoogle Scholar
  6. 6.
    O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Materials (Metallurgiya, Moscow, 1987) [in Russian].Google Scholar
  7. 7.
    G. Gottstein, D. A. Molodov, and L. S. Shvindlerman, Interface Sci. 6, 7 (1998).CrossRefGoogle Scholar
  8. 8.
    D. A. Molodov, V. A. Ivanov, and G. Gottstein, Acta Mater. 55, 1843 (2007).CrossRefGoogle Scholar
  9. 9.
    N. Masahashi, T. Takasugi, and O. Izumi, J. Mater. Sci. 22, 2599 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    R. Ramesh, B. Pathiraj, and B. H. Kolster, J. Mater. Proc. Technol. 56, 78 (1996).CrossRefGoogle Scholar
  11. 11.
    S. G. Protasova, V. G. Sursaeva, and L. S. Shvindlerman, Phys. Solid State 45, 1471 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    G. Gottstein, V. Sursaeva, and L. Shvindlerman, Interface Sci. 7, 273 (1999).CrossRefGoogle Scholar
  13. 13.
    M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, et al., Interface Sci. 7, 307 (1999).CrossRefGoogle Scholar
  14. 14.
    M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, et al., Acta Mater. 50, 1405 (2002).CrossRefGoogle Scholar
  15. 15.
    G. Poletaev, I. Zorya, and R. Rakitin, Comput. Mater. Sci. 148, 184 (2018).CrossRefGoogle Scholar
  16. 16.
    G. M. Poletaev, A. B. Yur’ev, V. E. Gromov, et al., Atomic Mechanisms of Structural-Energy Transformations near the Grain Boundaries of the Slope in FCC Metals and Intermetallic Ni 3 Al (SibGIU, Novokuznetsk, 2008) [in Russian].Google Scholar
  17. 17.
    F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    G. M. Poletaev, I. V. Zorya, D. V. Novoselova, et al., Int. J. Mater. Res. 108, 785 (2017).CrossRefGoogle Scholar
  19. 19.
    G. M. Poletaev, D. V. Novoselova, I. V. Zorya, and M. D. Starostenkov, Phys. Solid State 60, 847 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Fortes and A. M. Deus, Mater. Sci. Forum 455456, 648 (2004).Google Scholar
  21. 21.
    O. B. Perevalova, E. V. Konovalova, N. A. Koneva, et al., J. Mater. Sci. Technol. 19, 593 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • G. M. Poletaev
    • 1
    Email author
  • I. V. Zorya
    • 2
  • M. D. Starostenkov
    • 1
  • R. Yu. Rakitin
    • 3
  • P. Ya. Tabakov
    • 4
  1. 1.Polzunov Altai State Technical UniversityBarnaulRussia
  2. 2.Siberian State Industrial UniversityNovokuznetskRussia
  3. 3.Altai State UniversityBarnaulRussia
  4. 4.Durban University of TechnologyDurbanSouth Africa

Personalised recommendations