Skip to main content
Log in

Towards Solving the Mass-Composition Problem in Ultra High Energy Cosmic Rays

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the Auger mass-composition analysis of ultra high energy cosmic rays, based on the shape-fitting of Xmax distributions [1], we demonstrate that mass composition and energy spectra measured by Auger, Telescope Array and HiRes can be brought into good agreement. The shape-fitting analysis of Xmax distributions shows that the measured sum of proton and Helium fractions, for some hadronic-interaction models, can saturate the total flux. Such p + He model, with small admixture of other light nuclei, naturally follows from cosmology with recombination and reheating phases. The most radical assumption of the presented model is the assumed unreliability of the experimental separation of Helium and protons, which allows to consider He/p ratio as a free parameter. The results presented here show that the models with dominant p + He composition explain well the energy spectrum of the dip in the latest (2015–2017) data of Auger and Telescope Array, but have some tension at the highest energies with the expected Greisen–Zatsepin–Kuzmin cutoff. The Auger-Prime upgrade experiment has a great potential to reject or confirm this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Aab et al. (Auger Collab.), Phys. Rev. D 90, 122006 (2014).

    Article  ADS  Google Scholar 

  2. K. Greisen, Phys. Rev. Lett. 16, 48 (1966);

    Article  ADS  Google Scholar 

  3. G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).

    ADS  Google Scholar 

  4. G. R. Blumenthal, Phys. Rev. D 1, 1596 (1970).

    Article  ADS  Google Scholar 

  5. V. Berezinsky, A. Gazizov, and S. Grigorieva, Phys. Rev. D 74, 043005 (2006).

    Article  ADS  Google Scholar 

  6. V. Berezinsky, A. Gazizov, and S. Grigorieva, Phys. Lett. B 612, 147 (2005).

    Article  ADS  Google Scholar 

  7. R. Aloisio, V. Berezinsky, P. Blasi, A. Gazizov, S. Grigorieva, and B. Hnatyk, Astropart. Phys. 27, 76 (2007).

    Article  ADS  Google Scholar 

  8. T. Abu-Zayyad et al., Phys. Rev. Lett. 92, 151101 (2004).

    Article  ADS  Google Scholar 

  9. J. Abraham et al., Phys. Rev. Lett. 101, 061101 (2008).

    Article  ADS  Google Scholar 

  10. N. M. Gerasimova and I. L. Rozental, Sov. Phys. JETP 14, 350 (1961).

    Google Scholar 

  11. R. Aloisio, V. Berezinsky, and S. Grigorieva, Astropart. Phys. 41, 94 (2013).

    Article  ADS  Google Scholar 

  12. A. Aab et al. (Auger Collab.), Phys. Rev. D 90, 122005 (2014).

    Article  ADS  Google Scholar 

  13. R. U. Abbasi et al. (TA Collab.), Astropart. Phys. 64, 49 (2015).

    Article  ADS  Google Scholar 

  14. T. Abu-Zayyad et al. (HiRes-MIA Collab.), Astrophys. J. 557, 686 (2001).

    Article  ADS  Google Scholar 

  15. K. Werner, F. M. Liu, and T. Pirtoj, Phys. Rev. C 74, 044902 (2006).

    Article  ADS  Google Scholar 

  16. S. Ostapchenko, Phys. Rev. D 74, 014026 (2006).

    Article  ADS  Google Scholar 

  17. D. Garcia-Gamez et al. (Auger Collab.), in Proceedings of the ICRC 2011; arXiv:1107.4807.

  18. R. Conceicao, S. Andringa, L. Cazon, and M. Pimenta (for the Auger Collaboration), EPJ Web Conf. 52, 03004 (2013); arXiv:1301.0507.

  19. L. Collica et al. (Auger Collab.), Eur. Phys. J. Plus 131, 301 (2016); arXiv:1609.02498.

  20. W. D. Apel et al. (KASCADE-Grande Collab.), Phys. Rev. Lett. 107, 171104 (2011).

    Article  ADS  Google Scholar 

  21. V. S. Berezinsky, S. V. Bulanov, V. A. Dogiel, V. L. Ginzburg, and V. S. Ptuskin, Astrophysics of Cosmic Rays (North Holland, Amsterdam, 1990).

    Google Scholar 

  22. B. Wundheiler et al. (Auger Collab.), PoS (ICRC2015) 324 (2015); arXiv:1509.03732.

  23. A. Aab et al. (Auger Collab.), arXiv:1604.03637.

  24. R. U. Abbasi et al. (TA Collab.), Astrophys. J. 858, 76 (2018).

    Article  ADS  Google Scholar 

  25. A. A. Abdo et al. (Fermi-LAT Collab.), Phys. Rev. Lett. 104, 101101 (2015).

    Article  ADS  Google Scholar 

  26. R. Y. Liu, A. M. Taylor, X. Y. Wang, and F. Aharonian, Phys. Rev. D 94, 043008 (2016).

    Article  ADS  Google Scholar 

  27. E. Gavish and D. Eichler, Astrophys. J. 822, 56 (2016).

    Article  ADS  Google Scholar 

  28. V. Berezinsky, A. Gazizov, and O. Kalashev, Astropart. Phys. 84, 52 (2016).

    Article  ADS  Google Scholar 

  29. I. Valino et al. (Auger Collab.), PoS (ICRC2015) 271 (2015); arXiv:1509.03732.

  30. D. Ivanov et al. (TA Collab.), PoS (ICRC2015) 349 (2015).

  31. F. Fenu et al. (Auger Collab.), PoS (ICRC2017) 486 (2017); arXiv:1708.06592.

  32. J. Matthews et al. (TA Collab.), PoS (ICRC2017) 1096 (2017).

  33. V. Verzi et al. (Auger Collab.), in Proceedings of the ICRC 2013, arXiv:1307.5059.

  34. V. Verzi, PoS(ICRC2015) 015 (2016).

  35. R. Aloisio, V. Berezinsky, and P. Blasi, J. Cosmol. Astropart. Phys. 10, 020 (2014).

  36. E. J. Ahn et al., Phys. Rev. D 80, 094003 (2009).

    Article  ADS  Google Scholar 

  37. G. Hinshaw et al. (WMAP Collab.), Astrophys. J. Suppl. Ser. 180, 225 (2009).

    Article  ADS  Google Scholar 

  38. R. Adam et al. (Planck Collab.), Astron. Astrophys. 596, A108 (2016).

    Article  Google Scholar 

  39. A. Songaila, Astrophys. J. 561, L153 (2001).

    Article  ADS  Google Scholar 

  40. R. Y. Liu, A. M. Taylor, X. Y. Wang, and F. A. Aharonian, Phys. Rev. D 94, 043008 (2016); arXiv:1603.03223.

  41. F. W. Stecker, M. M. Malkan, and S. Scully, Astrophys. J. 648, 774 (2006).

    Article  ADS  Google Scholar 

  42. P. Younk and M. Risse, Astropart. Phys. 35, 807 (2012).

    Article  ADS  Google Scholar 

  43. A. Aab et al. (Auger Collab.), Phys. Lett. B 708, 288 (2016).

    Article  ADS  Google Scholar 

  44. A. Aab et al. (for Auger Collab.), Phys. Rev. Lett. 117, 192001 (2016).

    Article  ADS  Google Scholar 

  45. R. Takcisin et al., JPS Conf. Proc. 19, 011045 (2018).

  46. S. Ostapchenko, in Proceedings of the 25th European Cosmic Ray Symposia ECRS 2016, arXiv:1612.09461.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Aloisio or V. Berezinsky.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloisio, R., Berezinsky, V. Towards Solving the Mass-Composition Problem in Ultra High Energy Cosmic Rays. J. Exp. Theor. Phys. 128, 52–63 (2019). https://doi.org/10.1134/S1063776118120014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118120014

Navigation