Skip to main content
Log in

Cylindrical Damped Solitary Propagation in Superthermal Plasmas

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Wave properties of damped solitons in a collisional unmagnetized four-components dusty fluid plasma system contains superthermal distributed electrons, mobile ions, and negative-positive dusty grains have been examined. To study dissipative DIA mode properties, a reductive perturbation (RP) analysis is used under convenient geometrical coordinate transformation, three-dimensional damped Kadomtsev–Petviashvili (3D-CDKP) equation in cylindrical coordinates is obtained. Effects of collisional parameters on damped soliton pulse structures are studied. More specifically, the impact of axial, radial, and polar coordinates with the time on solitary propagation are examined. This investigation may be viable in plasma of the Earth’s mesosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. F. Verheest, Space Sci. Rev. 68 109 (1994).

    Article  ADS  Google Scholar 

  2. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasmas Physics (Inst. Phys., Bristol, 2002).

    Book  Google Scholar 

  3. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. Thomas, Elementary Physics of Complex Plasmas (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  4. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  5. P. K. Shukla and V. P. Slin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  6. F. Melandso, Phys. Plasmas 3, 3890 (1996).

    Article  ADS  Google Scholar 

  7. B. Sahu and M. Tribechem, Astrophys. Space Sci. 338, 259 (2012).

    Article  ADS  Google Scholar 

  8. Y. Nakamura and A. Sarma, Phys. Plasmas 8, 3921 (2001).

    Article  ADS  Google Scholar 

  9. G. O. Ludwig, J. F. Ferreria, and Y. Nakamura, Phys. Rev. Lett. 52, 4 (1984).

    Article  Google Scholar 

  10. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    Article  ADS  Google Scholar 

  11. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  12. J. B. Piper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).

    Article  ADS  Google Scholar 

  13. M. K. Mahanta and K. S. Goswami, Phys. Plasmas 8, 665 (2001).

    Article  ADS  Google Scholar 

  14. S. I. Popel, V. N. Tsytovich, and M. Y. Yu, Astrophys. Space Sci. 256, 107 (1998).

    Article  ADS  Google Scholar 

  15. W. M. Moslem, Phys. Plasmas 10, 3168 (2003).

    Article  ADS  Google Scholar 

  16. S. I. Popel A. P. Golub’, and T. V. Losseva, Phys. Rev. E 67, 056402 (2003).

  17. S. K. El-Labany, W. M. Moslem, and A. E. Mowafy, Phys. Plasmas 10, 4217 (2003).

    Article  ADS  Google Scholar 

  18. T. V. Losseva, S. I. Popel, A. P. Golub’, Yu N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).

    Article  ADS  Google Scholar 

  19. A. A. Mamun, J. Plasma Phys., 575 (1997).

  20. A. M. El-Hanbaly, M. Sallah, E. K. El-Shewy, and H. F. Darweesh, J. Exp. Theor. Phys. 121, 669 (2015).

    Article  ADS  Google Scholar 

  21. M. Horanyi, Ann. Rev. Astron. Astrophys. 34, 383 (1996).

    Article  ADS  Google Scholar 

  22. S. K. Zaghbeer, H. H. Salah, N. H. Sheta, E. K. El-Shewy, and A. Elgarayh, Astrophys. Space Sci. 353, 493 (2014).

    Article  ADS  Google Scholar 

  23. Y. Nakamura, T. Odagiri and I. Tsukabayashi, Plasma Phys. Control. Fusion 39, 105 (1997).

    Article  ADS  Google Scholar 

  24. H. Schamel, Plasma Phys. 14, 905 (1972).

    Article  ADS  Google Scholar 

  25. H. Schamel, J. Plasma Phys. 9, 377 (1973).

    Article  ADS  Google Scholar 

  26. H. G. Abdelwahed, E. K. El-Shewy, and A. A. Mahmoud, J. Exp. Theor. Phys. 122, 1111 (2016).

    Article  ADS  Google Scholar 

  27. M. A. Hellberg, R. L. Mace, T. K. Baluku, I. Kourakis, and N. S. Saini, Phys. Plasmas 16, 094701 (2009).

    Article  ADS  Google Scholar 

  28. E. K. El-Shewy, Astrophys Space Sci. 335, 389 (2011).

    Article  ADS  Google Scholar 

  29. S. Sultana, G. Sarri, and I. Kourakis, Phys. Plasmas 19, 012310 (2012).

    Article  ADS  Google Scholar 

  30. R. Sabry, W. M. Moslem, and P. K. Shukla, Plasma Phys. Control. Fusion 54, 035010 (2012).

    Article  ADS  Google Scholar 

  31. E. F. El-Shamy, Phys. Plasmas 21, 082110 (2014).

    Article  ADS  Google Scholar 

  32. H. G. Abdelwahed, E. K. El-Shewy, M. A. Zahran, and S. A. Elwakil, Phys. Plasmas 23, 022102 (2016).

    Article  ADS  Google Scholar 

  33. A. M. El-Hanbaly, E. K. El-Shewy, M. Sallah, and H. F. Darweesh, Commun. Theor. Phys. 65, 606 (2016).

    Article  ADS  Google Scholar 

  34. H. G. Abdelwahed, E. K. El-Shewy, M. A. Zahran, and S. A. Elwakil, Phys. Plasmas 23, 022102 (2016).

    Article  ADS  Google Scholar 

  35. H. G. Abdelwahed, E. K. El-Shewy, A. El-Depsy, and E. F. El-Shamy, Phys. Plasmas 24, 023703 (2017).

    Article  ADS  Google Scholar 

  36. R. Sabry and M. A. Omran, Astrophys. Space Sci. 344, 455 (2013).

    Article  ADS  Google Scholar 

  37. H. G. Abdelwahed, E. K. El-Shewy, and A. A. Mahmoud, Phys. Plasmas 24, 082107 (2017).

    Article  ADS  Google Scholar 

  38. J.-K. Xue, Phys. Lett. A 314, 479 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Borhanian and M. Shahmansouri, Phys. Plasmas 20, 013707 (2013).

    Article  ADS  Google Scholar 

  40. N. A. El-Bedwehy, M. A. El-Attafi and S. K. El-Labany, Astrophys. Space Sci. 361, 299 (2016).

    Article  ADS  Google Scholar 

  41. T. Taniuti and C. C. Wei, J. Phys. Soc. Jpn. 24, 941 (1968).

    Article  ADS  Google Scholar 

  42. K. Liu and S. D. Liu, Atmospheric Dynamics (Peking Univ. Press, Peking, 1999).

    Google Scholar 

  43. W. M. Moslem, R. Sabry and P. K. Shukla, Phys. Plasmas 17, 032305 (2010).

    Article  ADS  Google Scholar 

  44. V. I. Karpman and E. M. Maslov, Sov. Phys. JETP 46, 281 (1977).

    ADS  Google Scholar 

  45. R. L. Herman, J. Phys. A 23, 2327 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Ghosh, A. Adak, and M. Khan, Phys. Plasmas 21, 012303 (2014).

    Article  ADS  Google Scholar 

  47. A. M. Zadorozhny, Adv. Space Res. 28, 1095 (2001).

    Article  Google Scholar 

  48. S. K. El-Labany, E. K. El-Shewy, H. N. Abd El-Razek, and A. A. El-Rahman, Plasma Phys. Rep. 43, 576 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. El-Shewy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shewy, E.K., El-Rahman, A.A. & Zaghbeer, S.K. Cylindrical Damped Solitary Propagation in Superthermal Plasmas. J. Exp. Theor. Phys. 127, 761–766 (2018). https://doi.org/10.1134/S1063776118100138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100138

Keywords

Navigation