Skip to main content
Log in

Magnetic Monopoles and Dark Matter

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Schwinger’s idea about the magnetic world of the early Universe, in which magnetic charges (monopoles) and magnetic atoms (g+g) could be formed, is developed. In the present-day Universe magnetic charges with energies in the GeV range can be formed in the magnetospheres of young pulsars in superstrong magnetic fields. Spectroscopic features of magnetic atoms and possibilities for their observations are discussed. Relic magnetic atoms can contribute up to 18% to the dark matter density. The gamma-ray excess at our Galactic center could arise under two-photon annihilation of magnetic charges as a cooperative effect from neutron stars. A sharp physical difference of Schwinger’s magnetic world from Dirac’s present-day electric world is pointed out. Artificial magnetic monopoles are also mentioned briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Ray, E. Ruokokoski, S. Kandel, et al., Nature (London, U.K.) 505, 657 (2014).

    Article  ADS  Google Scholar 

  2. G. Chen, arXiv:1602.02230.

  3. N. P. Armitage, arXiv:1710.11226.

  4. P. Curie, Seances Soc. Fr. Phys. 76, 1 (1894).

    Google Scholar 

  5. F. Ehrenhaft, J. Franklin Inst. 3, 235 (1942).

    Article  Google Scholar 

  6. R. Sizov, Sov. Phys. JETP 33, 737 (1971).

    ADS  Google Scholar 

  7. B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).

    Article  ADS  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973, p. 91; Pergamon, Oxford, 1975).

  9. A. D. Sakharov, JETP Lett. 44, 379 (1986).

    ADS  Google Scholar 

  10. Ya. B. Zel’dovich and M. Yu. Khlopov, Phys. Lett. B 79, 239 (1978).

    Article  ADS  Google Scholar 

  11. J. Schwinger, Science 165 (3895), 757 (1969).

    Article  ADS  Google Scholar 

  12. L. Laperashvili and H. Nielsen, arXiv:hep-th/0311261.

  13. T. Ollikainen, K. Tiurev, A. Blinova, et al., arXiv:1611.07766v.2.

  14. E. Ruokokoski, V. Pietila, and M. Mottonen, Phys. Rev. A 84, 063627 (2011).

    Article  ADS  Google Scholar 

  15. I. A. Ryzhkin, J. Exp. Theor. Phys. 101, 481 (2005).

    Article  ADS  Google Scholar 

  16. S. Bramwell, Talk on School Les Houches, August 30, 2012.

  17. C. Castelnovo, R. Moessner, and S. Sondhi, Ann. Rev. Cond. Phys. 3, 35 (2012).

    Article  Google Scholar 

  18. A. Zvyagin, arXiv:1308.1014.

  19. Zh. Loshak, Inzh. Fiz., No. 3, 12 (2014).

  20. H. Stumpf, Z. Naturforsch. A 67, 163 (2012).

    Article  ADS  Google Scholar 

  21. P. B. Price, E. K. Shirk, W. Z. Osborne, et al., Phys. Rev. Lett. 35, 487 (1975).

    Article  ADS  Google Scholar 

  22. V. V. Burdyuzha and V. L. Kauts, Astrophys. J. Suppl. 92, 549 (1994).

    Article  ADS  Google Scholar 

  23. G. V. Domogatsky, Phys. Usp. 54, 959 (2011).

    Article  ADS  Google Scholar 

  24. A. D. Avrorin, arXiv:1512.01198.

  25. M. K. Sullivan and D. Fryberger, arXiv:1707.05295; arXiv:1511.02200.

  26. P. A. M. Dirac, Proc. R. Soc. London A 133, 60 (1931).

    Article  ADS  Google Scholar 

  27. E. N. Parker, Astrophys. J. 160, 383 (1970).

    Article  ADS  Google Scholar 

  28. V. Vento and V. Mantovani, arXiv:1306.4213.

  29. E. Amaldi, G. Baroni, H. Bradner, et al., CERN Report No. 63-13 (CERN, 1963).

  30. V. Vento, arXiv:astro-ph/0511764.

  31. L.N. Epele, H. Fanchiotti, C. A. Garcia Canal, and V. Vento, Eur. Phys. J. C 56, 87 (2008).

    Article  ADS  Google Scholar 

  32. C. T. Hill, Nucl. Phys. B 224, 469 (1983).

    Article  ADS  Google Scholar 

  33. J. Schwinger, Phys. Rev. D 12, 3105 (1975).

    Article  ADS  Google Scholar 

  34. W. Atwood, A. A. Abdo, M. Ackermann, et al., Astrophys. J. 697, 1071 (2009).

    Article  ADS  Google Scholar 

  35. S. Horiuchi, M. Kaplinghat, and A. Kwa, arXiv:1604.01402.

  36. R. Bartels, S. Krishnamurty, and Ch. Weniger, Phys. Rev. Lett. 116, 051102 (2016).

    Article  ADS  Google Scholar 

  37. S. Lee, M. Lisanti, B. Safdi, et al., Phys. Rev. Lett. 116, 051103 (2016).

    Article  ADS  Google Scholar 

  38. C. Boehm, M. Dolan, and Ch. McCabe, Phys. Rev. D 90, 023531 (2014).

    Article  ADS  Google Scholar 

  39. V. M. Charugin, Sov. Astron. 28, 67 (1984).

    ADS  Google Scholar 

  40. V. V. Burdyuzha, Astrophys. J. (in press).

  41. R. Sunyaev, E. Churazov, M. Gilfanov et al., Astrophys. J. Lett. 383, L49 (1991).

    Article  ADS  Google Scholar 

  42. R. A. Carrigan and W. P. Trower, Nature (London, U.K.) 305, 673 (1983).

    Article  ADS  Google Scholar 

  43. G. V. Domogatskii and I. M. Zheleznykh, Sov. J. Nucl. Phys. 10, 702 (1969).

    Google Scholar 

  44. V. K. Dubrovich and N. A. Sushko, Astrofizika 46, 517 (2003).

    Google Scholar 

  45. V. K. Dubrovich and M. Yu. Khlopov, JETP Lett. 77, 335 (2003).

    Article  ADS  Google Scholar 

  46. N. Craigie, G. Giacomelli, W. Nahm, and Q. Shafi, Theory and Detection of Magnetic Monopoles in Gauge Theories (World Scientific, Singapore, 1986).

    Book  Google Scholar 

  47. Particle Data Groups, Mesons (2016).

  48. Ya. N. Istomin and D. N. Sobyanin, Astron. Lett. 33, 660 (2007).

    Article  ADS  Google Scholar 

  49. S. Nakosai and S. Onoda, arXiv:1801.03117.

  50. C. Castelnovo, R. Moessner, and S. Sondhi, Nature (London, U.K.) 451, 42 (2008).

    Article  ADS  Google Scholar 

  51. L. D. C. Jaubert and P. C. W. Holdsworth, arXiv:1010.0970.

  52. V. Burdyuzha, O. Lalakulich, Yu. Ponomarev, and G. Vereshkov, Phys. Rev. D 55, R7340 (1997).

    Article  ADS  Google Scholar 

  53. V. V. Burdyuzha, Astron. Rep. 58, 353 (2014).

    Article  ADS  Google Scholar 

  54. V. V. Burdyuzha, J. Exp. Theor. Phys. 124, 358 (2017).

    Article  ADS  Google Scholar 

  55. K. A. Milton, Rep. Progr. Phys. 69, 1637 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  56. D. Olive and P. Goddard, Rep. Prog. Phys. 41, 1357 (1978).

    Article  ADS  Google Scholar 

  57. N. M. Barraz, Jr., J. M. Fonseca, and W. A. Moura-Melo, Phys. Rev. D 76, 027701 (2007).

    Article  ADS  Google Scholar 

  58. M. Chaichian, S. Ghosh, M. Langvik, and A. Tureanu, Phys. Rev. D 79, 125029 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  59. C. Csaki, Y. Grossman, and B. Heidenreich, Phys. Rev. D 85, 04514 (2012); arXiv:1108.4415.

    Google Scholar 

  60. C. Csaki, Yu. Shirman, J. Terning, and M. Waterbury, Phys. Rev. Lett. 120, 071603 (2018); arXiv: 1708.03330.

  61. F. Caruso, Rev. Brasil. Fis. 16, 188 (2013); arXiv:1305.4810.

  62. M. Born and L. Infeld, Nature (London, U.K.) 132, 1004 (1933).

    Article  ADS  Google Scholar 

  63. V. S. Netchitailo, J. High Energy Phys. 4 (1) (2018).

  64. www.gamma400.lebedev.ru.

  65. S. T. Bramwell, S. R. Giblin, S. Calder, et al., Nature (London, U.K.) 461, 956 (2009).

    Article  ADS  Google Scholar 

  66. N. Seiberg and E. Witten, Nucl. Phys. B 426, 19 (1994).

    Article  ADS  Google Scholar 

  67. http://g-2.kek.jp.

  68. F. Jegerlehner, arXiv:1804.07409.

  69. S. R. Giblin, M. Twengström, L. Bovo, et al., arXiv:1804.08970.

Download references

ACKNOWLEDGMENTS

I thank I.A. Ryzhkin from the Institute of Solid State Physics of the Russian Academy of Sciences for the debates on magnetic monopoles in spin ice and the referee of this review for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Burdyuzha.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdyuzha, V.V. Magnetic Monopoles and Dark Matter. J. Exp. Theor. Phys. 127, 638–646 (2018). https://doi.org/10.1134/S1063776118100011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100011

Keywords

Navigation