Skip to main content
Log in

Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Zwanzig, Phys. Rev. 129, 486 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. N. N. Bogolyubov, Selected Works (Nauk. Dumka, Kiev, 1969–1971) [in Russian].

    MATH  Google Scholar 

  4. M. Bonitz, Quantum Kinetic Theory (B. G. Teubner, Stuttgart, 1989).

    MATH  Google Scholar 

  5. D. V. Kuznetsov, Vl. K. Roerikh, and M. G. Gladush, J. Exp. Theor. Phys. 113, 647 (2011).

    Article  ADS  Google Scholar 

  6. O. V. Konstantinov and V. I. Perel’, Sov. Phys. JETP 12, 142 (1960).

    Google Scholar 

  7. M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 20, 997 (1964).

    Google Scholar 

  8. M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 21, 227 (1965).

    ADS  Google Scholar 

  9. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).

    Google Scholar 

  10. B. R. Mollow, Phys. Rev. A 12, 1919 (1975).

    Article  ADS  Google Scholar 

  11. W. Konyk and J. Gea-Banacloche, Phys. Rev. A 93, 063807 (2016).

    Article  ADS  Google Scholar 

  12. A. Nysteen et al., New J. Phys. 17, 023030 (2015).

    Article  ADS  Google Scholar 

  13. Z. Liao, X. Zeng, H. Nha, and M. Zubairy, Phys. Scr. 91, 063004 (2016).

    Article  ADS  Google Scholar 

  14. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

    Article  ADS  Google Scholar 

  15. U. Schollwock, Rev. Mod. Phys. 77, 259 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Verstraete and J. I. Cirac, Phys. Rev. Lett. 104, 190405 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Pichler and P. Zoller, Phys. Rev. Lett. 116, 093601 (2016).

    Article  ADS  Google Scholar 

  18. A. M. Basharov, Photonics. Method of Unitary Transformation in Nonlinear Optics (Mosk. Inzh. Fiz. Inst., Moscow, 1990) [in Russian].

    Google Scholar 

  19. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).

    Book  MATH  Google Scholar 

  20. A. M. Basharov, in Coherent Optics and Optical Spectroscopy, Proceedings of the 17th All-Russia Youth School, Ed. by M. Kh. Salakhov (Kazan. Gos. Univ., Kazan’, 2013), p. 19.

  21. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000, 2004).

    Book  MATH  Google Scholar 

  22. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2003).

    MATH  Google Scholar 

  23. C. W. Gardiner and M. J. Collet, Phys. Rev. A 31, 3761 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. M. Basharov, Phys. Rev. A 84, 013801 (2011).

    Article  ADS  Google Scholar 

  25. A. M. Basharov, JETP Lett. 94, 27 (2011).

    Article  ADS  Google Scholar 

  26. A. M. Basharov, J. Exp. Theor. Phys. 113, 376 (2011).

    Article  ADS  Google Scholar 

  27. A. M. Basharov, J. Exp. Theor. Phys. 115, 371 (2012).

    Article  ADS  Google Scholar 

  28. A. M. Basharov, Opt. Spectrosc. 116, 495 (2014).

    Article  ADS  Google Scholar 

  29. R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).

    Article  ADS  Google Scholar 

  30. K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996; Mir, Moscow, 1983).

    Book  MATH  Google Scholar 

  31. R. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  32. P. G. Brooke, K.-P. Marzlin, J. D. Cresser, and B. C. Sanders, Phys. Rev. A 77, 033844 (2008).

    Article  ADS  Google Scholar 

  33. J. T. Manassah, Laser Phys. 20, 1397 (2010).

    Article  ADS  Google Scholar 

  34. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature (London, U.K.) 466, 735 (2010).

    Article  ADS  Google Scholar 

  35. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  36. M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).

    Article  ADS  Google Scholar 

  37. A. M. Basharov, Phys. Lett. A 376, 1881 (2012).

    Article  ADS  Google Scholar 

  38. V. N. Gorbachev and A. I. Zhiliba, J. Phys. A 33, 3771 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  39. V. Weisskopf and E. Wigner, in Collected Works of E. P. Wigner, The Scientific Papers (Springer, Berlin, 1997), Vol. AIII, pp. 30, 50.

    Google Scholar 

  40. H. Haken, Z. Phys. 181, 96 (1964).

    Article  ADS  Google Scholar 

  41. M. Lax, Phys. Rev. 145, 110 (1966).

    Article  ADS  Google Scholar 

  42. J. P. Gordon, L. R. Walker, and W. Louisell, Phys. Rev. 130, 806 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  43. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley, New York, 2004).

    Google Scholar 

  44. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms. Introduction to Quantum Electrodynamics (Wiley, Chichester, 1997).

    Google Scholar 

  45. B. Q. Baragiola et al., Phys. Rev. A 86, 013811 (2012).

    Article  ADS  Google Scholar 

  46. K. A. Fischer et al., arXiv: 1710.02875v3 [quant-ph] (2017).

    Google Scholar 

  47. G. Jona-Lasinio, Phys. Rep. 352, 439 (2001).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Basharov.

Additional information

Original Russian Text © A.M. Basharov, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 3, pp. 375–387.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basharov, A.M. Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms. J. Exp. Theor. Phys. 126, 310–320 (2018). https://doi.org/10.1134/S1063776118030123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118030123

Navigation