Advertisement

Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms

  • A. M. Basharov
Atoms, Molecules, Optics

Abstract

The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Zwanzig, Phys. Rev. 129, 486 (1963).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    N. N. Bogolyubov, Selected Works (Nauk. Dumka, Kiev, 1969–1971) [in Russian].zbMATHGoogle Scholar
  4. 4.
    M. Bonitz, Quantum Kinetic Theory (B. G. Teubner, Stuttgart, 1989).zbMATHGoogle Scholar
  5. 5.
    D. V. Kuznetsov, Vl. K. Roerikh, and M. G. Gladush, J. Exp. Theor. Phys. 113, 647 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    O. V. Konstantinov and V. I. Perel’, Sov. Phys. JETP 12, 142 (1960).Google Scholar
  7. 7.
    M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 20, 997 (1964).Google Scholar
  8. 8.
    M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 21, 227 (1965).ADSGoogle Scholar
  9. 9.
    L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).Google Scholar
  10. 10.
    B. R. Mollow, Phys. Rev. A 12, 1919 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    W. Konyk and J. Gea-Banacloche, Phys. Rev. A 93, 063807 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. Nysteen et al., New J. Phys. 17, 023030 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Liao, X. Zeng, H. Nha, and M. Zubairy, Phys. Scr. 91, 063004 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    S. R. White, Phys. Rev. Lett. 69, 2863 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    U. Schollwock, Rev. Mod. Phys. 77, 259 (2005).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Verstraete and J. I. Cirac, Phys. Rev. Lett. 104, 190405 (2010).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Pichler and P. Zoller, Phys. Rev. Lett. 116, 093601 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    A. M. Basharov, Photonics. Method of Unitary Transformation in Nonlinear Optics (Mosk. Inzh. Fiz. Inst., Moscow, 1990) [in Russian].Google Scholar
  19. 19.
    A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).CrossRefzbMATHGoogle Scholar
  20. 20.
    A. M. Basharov, in Coherent Optics and Optical Spectroscopy, Proceedings of the 17th All-Russia Youth School, Ed. by M. Kh. Salakhov (Kazan. Gos. Univ., Kazan’, 2013), p. 19.Google Scholar
  21. 21.
    C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000, 2004).CrossRefzbMATHGoogle Scholar
  22. 22.
    H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2003).zbMATHGoogle Scholar
  23. 23.
    C. W. Gardiner and M. J. Collet, Phys. Rev. A 31, 3761 (1985).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. M. Basharov, Phys. Rev. A 84, 013801 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    A. M. Basharov, JETP Lett. 94, 27 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    A. M. Basharov, J. Exp. Theor. Phys. 113, 376 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    A. M. Basharov, J. Exp. Theor. Phys. 115, 371 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    A. M. Basharov, Opt. Spectrosc. 116, 495 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).ADSCrossRefGoogle Scholar
  30. 30.
    K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996; Mir, Moscow, 1983).CrossRefzbMATHGoogle Scholar
  31. 31.
    R. Dicke, Phys. Rev. 93, 99 (1954).ADSCrossRefGoogle Scholar
  32. 32.
    P. G. Brooke, K.-P. Marzlin, J. D. Cresser, and B. C. Sanders, Phys. Rev. A 77, 033844 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    J. T. Manassah, Laser Phys. 20, 1397 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature (London, U.K.) 466, 735 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).CrossRefGoogle Scholar
  36. 36.
    M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).ADSCrossRefGoogle Scholar
  37. 37.
    A. M. Basharov, Phys. Lett. A 376, 1881 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    V. N. Gorbachev and A. I. Zhiliba, J. Phys. A 33, 3771 (2000).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    V. Weisskopf and E. Wigner, in Collected Works of E. P. Wigner, The Scientific Papers (Springer, Berlin, 1997), Vol. AIII, pp. 30, 50.Google Scholar
  40. 40.
    H. Haken, Z. Phys. 181, 96 (1964).ADSCrossRefGoogle Scholar
  41. 41.
    M. Lax, Phys. Rev. 145, 110 (1966).ADSCrossRefGoogle Scholar
  42. 42.
    J. P. Gordon, L. R. Walker, and W. Louisell, Phys. Rev. 130, 806 (1963).ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley, New York, 2004).Google Scholar
  44. 44.
    C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms. Introduction to Quantum Electrodynamics (Wiley, Chichester, 1997).Google Scholar
  45. 45.
    B. Q. Baragiola et al., Phys. Rev. A 86, 013811 (2012).ADSCrossRefGoogle Scholar
  46. 46.
    K. A. Fischer et al., arXiv: 1710.02875v3 [quant-ph] (2017).Google Scholar
  47. 47.
    G. Jona-Lasinio, Phys. Rep. 352, 439 (2001).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.National Research Center “Kurchatov Institute,”MoscowRussia
  2. 2.Department of Mathematics and Mathematical Methods of PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations