Advertisement

Supersonic N-Crowdions in a Two-Dimensional Morse Crystal

  • S. V. Dmitriev
  • E. A. Korznikova
  • A. P. Chetverikov
Solids and Liquids

Abstract

An interstitial atom placed in a close-packed atomic row of a crystal is called crowdion. Such defects are highly mobile; they can move along the row, transferring mass and energy. We generalize the concept of a classical supersonic crowdion to an N-crowdion in which not one but N atoms move simultaneously with a high velocity. Using molecular dynamics simulations for a close-packed two-dimensional Morse crystal, we show that N-crowdions transfer mass much more efficiently, because they are capable of covering large distances while having a lower total energy than that of a classical 1-crowdion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Indenbom, JETP Lett. 12, 369 (1970).ADSGoogle Scholar
  2. 2.
    V. V. Pokropivny, V. V. Skorokhod, and A. V. Pokropivny, Model. Simul. Mater. Sci. 5, 579 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    V. D. Natsik and S. N. Smirnov, Low Temp. Phys. 42, 207 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    M. Kiritani, J. Nucl. Mater. 276, 41 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    I. Salehinia and D. F. Bahr, Scripta Mater. 66, 339 (2012).CrossRefGoogle Scholar
  6. 6.
    V. G. Kononenko, V. V. Bogdanov, A. N. Turenko, M. A. Volosyuk, and A. V. Volosyuk, Probl. At. Sci. Technol. 104, 15 (2016).Google Scholar
  7. 7.
    A. Korbel and W. Bochniak, Int. J. Mech. Sci. 128, 269 (2017).CrossRefGoogle Scholar
  8. 8.
    H. Mehrer, Diffusion in Solids (Springer, Berlin, 2007).CrossRefGoogle Scholar
  9. 9.
    A. E. Sand, S. L. Dudarev, and K. Nordlund, Europhys. Lett. 103, 46003 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    X. Yi, M. L. Jenkins, K. Hattar, P. D. Edmondson, and S. G. Roberts, Acta Mater. 92, 163 (2015).CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, K. Yabuuchi, and A. Kimura, J. Nucl. Mater. 480, 207 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    T. Koyanagi, N. A. P. K. Kumar, T. Hwang, L. M. Garrison, X. Hu, L. L. Snead, and Y. Katoh, J. Nucl. Mater. 490, 66 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    A. Xu, D. E. J. Armstrong, C. Beck, M. P. Moody, G. D. W. Smith, P. A. J. Bagot, and S. G. Roberts, Acta Mater. 124, 71 (2017).CrossRefGoogle Scholar
  14. 14.
    D. A. Terentyev, T. P. C. Klaver, P. Olsson, M.-C.Marinica, F. Willaime, C. Domain, and L. Malerba, Phys. Rev. Lett. 100, 145503 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    H. R. Paneth, Phys. Rev. 80, 708 (1950).ADSCrossRefGoogle Scholar
  16. 16.
    P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B 76, 054107 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    A. M. Kosevich and A. S. Kovalev, Solid St. Commun. 12, 763 (1973).ADSCrossRefGoogle Scholar
  18. 18.
    A. S. Davydov and A. V. Zolotariuk, Phys. Scr. 30, 426 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    J. F. R. Archilla, Y. A. Kosevich, N. Jimenez, V. J. Sanchez-Morcillo, and L. M. Garcia-Raffi, Phys. Rev. E 91, 022912 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    Yu. A. Kosevich, R. Khomeriki, and S. Ruffo, Europhys. Lett. 66, 21 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    Y. N. Osetsky, D. J. Bacon, and A. Serra, Philos. Mag. Lett. 79, 273 (1999).CrossRefGoogle Scholar
  22. 22.
    S. Han, L. A. Zepeda-Ruiz, G. J. Ackland, R. Car, and D. J. Srolovitz, Phys. Rev. B 66, 220101 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    H. Abe, N. Sekimura, and Y. Yang, J. Nucl. Mater. 323, 220 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    S. L. Dudarev, Phil. Mag. 83, 3577 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    Y. N. Osetsky, D. J. Bacon, A. Serra, B. N. Singh, and S. I. Golubov, Phil. Mag. 83, 61 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    D. A. Terentyev, L. Malerba, and M. Hou, Phys. Rev. B 75, 104108 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    W. H. Zhou, C. G. Zhang, Y. G. Li, and Z. Zeng, Sci. Rep. 4, 5096 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    W. H. Zhou, C. G. Zhang, Y. G. Li, and Z. Zeng, J. Nucl. Mater. 453, 202 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    J. F. R. Archilla, S. M. M. Coelho, F. D. Auret, V. I. Dubinko, and V. Hizhnyakov, Phys. D (Amsterdam, Neth.) 297, 56 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    F. M. Russell, Nature (London, U.K.) 217, 51 (1967).ADSCrossRefGoogle Scholar
  31. 31.
    F. M. Russell, Phys. Lett. A 130, 489 (1988).ADSCrossRefGoogle Scholar
  32. 32.
    F. Russell, Nucl. Tracks Radiat. Meas. 15, 41 (1988).CrossRefGoogle Scholar
  33. 33.
    D. Schlößer, K. Kroneberger, M. Schosnig, F. M. Russell, and K. O. Groeneveld, Radiat. Meas. 23, 209 (1994).CrossRefGoogle Scholar
  34. 34.
    F. M. Russell and J. C. Eilbeck, Europhys. Lett. 78, 10004 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    J. Bajars, J. C. Eilbeck, and B. Leimkuhler, Phys. D (Amsterdam, Neth.) 301–302, 8 (2015).CrossRefGoogle Scholar
  36. 36.
    J. Bajars, J. C. Eilbeck, and B. Leimkuhler, Springer Ser. Mater. Sci. 221, 35 (2015).CrossRefGoogle Scholar
  37. 37.
    J. L. Marin, F. M. Russell, and J. C. Eilbeck, Phys. Lett. A 281, 21 (2001).ADSCrossRefGoogle Scholar
  38. 38.
    S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, and M. G. Velarde, Phys. Usp. 59, 446 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Phys. D (Amsterdam, Neth.) 240, 1954 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    Yu. A. Kosevich, J. Phys.: Conf. Ser. 833, 012021 (2017).Google Scholar
  41. 41.
    B. B. Straumal, X. Sauvage, B. Baretzky, A. A. Mazilkin, and R. Z. Valiev, Scr. Mater. 70, 59 (2014).CrossRefGoogle Scholar
  42. 42.
    B. Straumal, A. Korneva, and P. Zieba, Arch. Civil Mech. Eng. 14, 242 (2014).CrossRefGoogle Scholar
  43. 43.
    B. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, K. I. Kolesnikov, A. Korneva, P. Ziéba, and B. Baretzky, JETP Lett. 100, 376 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    C. M. Cepeda-Jimenez, J. I. Beltran, A. Hernando, M. A. Garcia, F. Yndurain, A. Zhilyaev, and M. T. Perez-Prado, Acta Mater. 123, 206 (2017).CrossRefGoogle Scholar
  45. 45.
    C. Domain and A. Legris, Phil. Mag. 85, 569 (2005).ADSCrossRefGoogle Scholar
  46. 46.
    G. Verite, C. Domain, C.-C. Fu, P. Gasca, A. Legris, and F. Willaime, Phys. Rev. B 87, 134108 (2013).ADSCrossRefGoogle Scholar
  47. 47.
    Y.-H. Li, H.-B. Zhou, S. Jin, Y. Zhang, H. Deng, and G.-H. Lu, Nucl. Fusion 57, 046006 (2017).ADSCrossRefGoogle Scholar
  48. 48.
    A. M. Iskandarov, N. N. Medvedev, P. V. Zakharov, and S. V. Dmitriev, Comput. Mater. Sci. 47, 429 (2009).CrossRefGoogle Scholar
  49. 49.
    R. I. Garber and A. I. Fedorenko, Sov. Phys. Usp. 7, 479 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. V. Dmitriev
    • 1
    • 2
  • E. A. Korznikova
    • 1
  • A. P. Chetverikov
    • 3
  1. 1.Institute for Metal Superplasticity ProblemsRussian Academy of SciencesUfaRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Saratov National Research State UniversitySaratovRussia

Personalised recommendations