Transport, Magnetic, and Memristive Properties of a Nanogranular (CoFeB) x (LiNbO y )100–x Composite Material

  • V. V. Rylkov
  • S. N. Nikolaev
  • V. A. Demin
  • A. V. Emelyanov
  • A. V. Sitnikov
  • K. E. Nikiruy
  • V. A. Levanov
  • M. Yu. Presnyakov
  • A. N. Taldenkov
  • A. L. Vasiliev
  • K. Yu. Chernoglazov
  • A. S. Vedeneev
  • Yu. E. Kalinin
  • A. B. Granovsky
  • V. V. Tugushev
  • A. S. Bugaev
Order, Disorder, and Phase Transition in Condensed System
  • 2 Downloads

Abstract

The properties of (CoFeB) x (LiNbO y )100–x nanocomposite films with a ferromagnetic alloy content x = 6–48 at % are comprehensively studied. The films are shown to consist of ensembles of CoFe granules 2–4 nm in size, which are strongly elongated (up to 10–15 nm) in the nanocomposite growth direction and are located in an LiNbO y matrix with a high content of Fe2+ and Co2+ magnetic ions (up to 3 × 1022 cm–3). At T ≤ 25 K, a paramagnetic component of the magnetization of nanocomposites is detected along with a ferromagnetic component, and the contribution of the former component is threefold that of the latter. A hysteresis of the magnetization is observed below the percolation threshold up to x ≈ 33 at %, which indicates the appearance of a superferromagnetic order in the nanocomposites. The temperature dependence of the electrical conductivity of the nanocomposites in the range T ≈ 10–200 K on the metallic side of the metal–insulator transition (44 at % < x < 48 at %) is described by a logarithmic law σ(T) ∝ lnT. This law changes into the law of “1/2” at x ≤ 40 at %. The tunneling anomalous Hall effect is strongly suppressed and the longitudinal conductivity turns out to be lower than in a (CoFeB) x (AlO y )100–x composite material by an order of magnitude. The capacitor structures based on (CoFeB) x (LiNbO y )100–x films exhibit resistive switching effects. They are related to (i) the formation of isolated chains of elongated granules and an anomalously strong decrease in the resistance in fields E > 104 V/cm because of the suppression of Coulomb blockage effects and the generation of oxygen vacancies VO and (ii) the injection (or extraction) of VO vacancies (depending on the sign of voltage) into a strongly oxidized layer in the nanocomposites, which is located near an electrode of the structure and controls its resistance. The number of stable resistive switchings exceeds 105 at a resistance ratio Roff/Ron ~ 50.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano-and Micro-Heterogeneous Systems (BINOM, Labor. Znanii, Moscow, 2012) [in Russian].Google Scholar
  3. 3.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Moscow, Nauka, 1979).CrossRefGoogle Scholar
  4. 4.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).Google Scholar
  5. 5.
    C. J. Adkins, in Metal-Insulator Transitions Revisited, Ed. by P. P. Edwards and C. N. R. Rao (Taylor Francis, London, 1995), p. 191.Google Scholar
  6. 6.
    M. V. Feigel’man and A. S. Ioselevich, JETP Lett. 81, 277 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. B 72, 125121 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. O. Mikhailovsky, V. N. Prudnikov, K. Yu. Chernoglazov, et al., Solid St. Phenom. 233–234, 403 (2015).CrossRefGoogle Scholar
  10. 10.
    D. Bartov, A. Segai, M. Karpovski, and A. Gerber, Phys. Rev. B 90, 144423 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. O. Mikhailovskii, V. N. Prudnikov, V. V. Ryl’kov, K. Yu. Chernoglazov, A. V. Sitnikov, Yu. E. Kalinin, and A. B. Granovskii, Phys. Solid State 58, 444 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. B. Pakhomov and X. Yan, Solid St. Comm. 99, 139 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    A. Milner, A. Gerber, B. Groisman, et al., Phys. Rev. Lett. 76, 475 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V.A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Vedyayev, N. V. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    K. K. Wong, Properties of Lithium Niobate (INSPEC, London, 2002).Google Scholar
  17. 17.
    O. G. Udalov and I. S. Beloborodov, Phys. Rev. B 95, 045427 (2017)ADSCrossRefGoogle Scholar
  18. 17a.
    O. G. Udalov and I. S. Beloborodov, J. Phys.: Condens. Matter 29, 155801 (2017).ADSGoogle Scholar
  19. 18.
    S. Bedanta, T. Eimuller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, and P. P. Freitas, Phys. Rev. Lett. 98, 176601 (2007).ADSCrossRefGoogle Scholar
  20. 19.
    Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Ed. by D. Ielmini and R. Waser (Wiley-VCH, Weinheim, 2016).Google Scholar
  21. 20.
    R. A. de Souza, V. Metlenko, D. Park, and T. E. Weirich, Phys. Rev. B 85, 174109 (2012).ADSCrossRefGoogle Scholar
  22. 21.
    D. Cawley, J. W. Halloran, and A. R. Cooper, J. Am. Ceram. Soc. 74, 2086 (1991); doi 10.1111/j.1151-2916.1991.tb08264.xCrossRefGoogle Scholar
  23. 22.
    M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, Nature (London, U.K.) 521, 61 (2015).ADSCrossRefGoogle Scholar
  24. 23.
    M. Prezioso, F. M. Bayat, B. Hoskins, K. Likharev, and D. Strukov, Sci. Rep. 6, 21331 (2016). doi 10.1038/srep21331ADSCrossRefGoogle Scholar
  25. 24.
    A. V. Emelyanov, D. A. Lapkin, V. A. Demin, et al., AIP Adv. 6, 111301 (2016).ADSCrossRefGoogle Scholar
  26. 25.
    C.-C. Hsieh, A. Roy, Y.-F. Chang, D. Shahrjerdi, and S. K. Banerjee, Appl. Phys. Lett. 109, 223501 (2016).ADSCrossRefGoogle Scholar
  27. 26.
    C. Yakopcic, S. Wang, W. Wang, E. Shin, J. Boeckl, G. Subramanyam, and T. M. Taha, Neural Comput. Appl. (2017). doi 10.1007/s00521-017-2958-zGoogle Scholar
  28. 27.
    X. Pan, Y. Shuai, C. Wu, W. Luo, X. Sun, H. Zeng, S. Zhou, R. Bottger, X. Ou, T. Mikolajick, W. Zhang, and H. Schmidt, Appl. Phys. Lett. 108, 032904 (2016).ADSCrossRefGoogle Scholar
  29. 28.
    Yu. E. Kalinin, A. N. Remizov, and A. V. Sitnikov, Phys. Solid State 46, 2146 (2004).ADSCrossRefGoogle Scholar
  30. 29.
    W. C. Ellis and E. S. Greiner, Trans. Am. Soc. Met. 29, 415 (1941).Google Scholar
  31. 30.
    L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat’ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and Yu. S. Khodeev, Bond-Breaking Energies. Chemical Ionization Potentials and Electron Affinity (Nauka, Moscow, 1974) [in Russian].Google Scholar
  32. 31.
    A. L. Efros, Physics and Geometry of Disorder: Percolation Theory (Science for Everyone) (Nauka, Moscow, 1982; Mir, Moscow, 1987).Google Scholar
  33. 32.
    N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).ADSCrossRefGoogle Scholar
  34. 33.
    A. Pakhomov, X. Yan, and B. Zhao, Appl. Phys. Lett. 67, 3497 (1995).ADSCrossRefGoogle Scholar
  35. 34.
    B. A. Aronzon, D. Yu. Kovalev, A. N. Lagar’kov, E. Z. Meilikhov, V. V. Ryl’kov, M. A. Sedo-va, N. Negre, M. Goiran, and Dzh. Leotin, JETP Lett. 70, 90 (1999).ADSCrossRefGoogle Scholar
  36. 35.
    A. Gerber, A. Milner, A. Finkler, M. Karpovski, L. Goldsmith, J. Tuaillon-Combes, O. Boisron, P. Mélinon, and A. Perez, Phys. Rev. B 69, 224403 (2004).ADSCrossRefGoogle Scholar
  37. 36.
    H. Meier, M. Yu. Kharitonov, and K. B. Efetov, Phys. Rev. B 80, 045122 (2009).ADSCrossRefGoogle Scholar
  38. 37.
    A. A. Timopheev, I. Bdikin, A. F. Lozenko, O. V. Stognei, A. V. Sitnikov, A. V. Los, and N. A. Sobolev, J. Appl. Phys. 111, 123915 (2012).ADSCrossRefGoogle Scholar
  39. 38.
    J. V. Kasiuk, J. A. Fedotova, J. Przewoznik, J. Zukrowski, M. Sikora, Cz. Kapusta, A. Grce, and M. Milosavljevic, J. Appl. Phys. 116, 044301 (2014).ADSCrossRefGoogle Scholar
  40. 39.
    X. Batlle and A. Labarta, J. Phys. D: Appl. Phys. 35, R15 (2002).ADSCrossRefGoogle Scholar
  41. 40.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).MATHGoogle Scholar
  42. 41.
    S. D. Ha and S. Ramanathan, J. Appl. Phys. 110, 071101 (2011).ADSCrossRefGoogle Scholar
  43. 42.
    J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).ADSCrossRefGoogle Scholar
  44. 43.
    J. S. Lee, S. Lee, and T. W. Noh, Appl. Phys. Rev. 2, 031303 (2015).ADSCrossRefGoogle Scholar
  45. 44.
    D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).ADSCrossRefGoogle Scholar
  46. 45.
    A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, Nat. Nanotechnol. 11, 67 (2016).ADSCrossRefGoogle Scholar
  47. 46.
    D. Xu, X. N. Shangguan, S. M. Wang, H. T. Cao, L. Y. Liang, H. L. Zhang, J. H. Gao, W. M. Long, J. R. Wang, and F. Zhuge, AIP Adv. 7, 025102 (2017).ADSCrossRefGoogle Scholar
  48. 47.
    A. V. Shaposhnikov, T. V. Perevalov, V. A. Gritsenko, C. H. Cheng, and A. Chin, Appl. Phys. Lett. 100, 243506 (2012).ADSCrossRefGoogle Scholar
  49. 48.
    D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).ADSCrossRefGoogle Scholar
  50. 49.
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, Nat. Comm. 3, 732 (2012). doi 10.1038/ncomms1737ADSCrossRefGoogle Scholar
  51. 50.
    J.-Y. Chen, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, and W.-W. Wu, Adv. Mater. 27, 5028 (2015).CrossRefGoogle Scholar
  52. 51.
    M. K. Yang, H. Ju, G.-H. Kim, J.-K. Lee, and H.-C. Ryu, Sci. Rep. 5, 14053 (2015). doi 10.1038/srep14053ADSCrossRefGoogle Scholar
  53. 52.
    S. E. Savel’ev, F. Marchesoni, and A. M. Bratkovsky, Eur. Phys. J. B 86, 501 (2013).ADSCrossRefGoogle Scholar
  54. 53.
    S. Tang, F. Tesler, F. G. Marlasca, P. Levy, V. Dobrosavljevic, and M. Rozenberg, Phys. Rev. X 6, 011028 (2016).Google Scholar
  55. 54.
    B. Hudec, A. Paskaleva, P. Jančovič, J. Dérer, J. Fedor, A. Rosová, E. Dobročka, and K. Fröhlich, Thin Sol. Films 563, 10 (2014).ADSCrossRefGoogle Scholar
  56. 55.
    L. Alekseeva, T. Nabatame, T. Chikyow, and A. Petrov, Jpn. J. Appl. Phys. 55, 08PB02 (2016).CrossRefGoogle Scholar
  57. 56.
    Yu. V. Khrapovitskaya, N. E. Maslova, Yu. V. Grishchenko, V. A. Demin, and M. L. Zanaveskin, Tech. Phys. Lett. 40, 317 (2014)ADSCrossRefGoogle Scholar
  58. 56a.
    A. V. Emel’yanov, V. A. Demin, I. M. Antropov, G. I. Tselikov, Z. V. Lavrukhina, and P. K. Kashkarov, Tech. Phys. 60, 112 (2015).CrossRefGoogle Scholar
  59. 57.
    D. I. Aladashvili, Z. A. Adamiya, K. G. Lavdovskii, E. I. Levin, and B. I. Shklovskii, Sov. Phys. Semicond. 23, 132 (1989).Google Scholar
  60. 58.
    M. Pollak and J. J. Hauser, Phys. Rev. Lett. 31, 1304 (1973)ADSCrossRefGoogle Scholar
  61. 58a.
    M. E. Raikh and I. M. Ruzin, JETP Lett. 43, 562 (1986).ADSGoogle Scholar
  62. 59.
    O. G. Udalov, N. M. Chtchelkatchev, A. Glatz, and I. S. Beloborodov, Phys. Rev. B 89, 054203 (2014).ADSCrossRefGoogle Scholar
  63. 60.
    L. V. Lutsev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Phys. Solid State 44, 1889 (2002)ADSCrossRefGoogle Scholar
  64. 60a.
    L. V. Lutsev, T. K. Zvonarev, and V. M. Lebedev, Tech. Phys. Lett. 27, 659 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Rylkov
    • 1
    • 5
  • S. N. Nikolaev
    • 1
  • V. A. Demin
    • 1
  • A. V. Emelyanov
    • 1
  • A. V. Sitnikov
    • 2
  • K. E. Nikiruy
    • 1
    • 3
  • V. A. Levanov
    • 1
    • 4
  • M. Yu. Presnyakov
    • 1
  • A. N. Taldenkov
    • 1
  • A. L. Vasiliev
    • 1
  • K. Yu. Chernoglazov
    • 1
  • A. S. Vedeneev
    • 5
  • Yu. E. Kalinin
    • 2
  • A. B. Granovsky
    • 4
  • V. V. Tugushev
    • 1
  • A. S. Bugaev
    • 3
    • 5
  1. 1.National Research Centre “Kurchatov Institute,”MoscowRussia
  2. 2.Voronezh State Technical UniversityVoronezhRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  4. 4.Moscow State UniversityMoscowRussia
  5. 5.Fryazino Branch, Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesFryazino, Moscow oblastRussia

Personalised recommendations