Determination of the Spin–Spin Coupling Constant in Hydrogen Deuteride HD and Estimates of the Manifestation of Axion-Like Particles

Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • 2 Downloads

Abstract

An experimental value of the spin–spin coupling constant in deuterated molecular hydrogen HD has been obtained, J pd = (43.112 ± 0.005) Hz (300 K), while investigating two gaseous samples at pressures of 95 and 155 atm. The experimental result does not coincide with Jpd = (43.31 ± 0.05) Hz that was calculated theoretically by Helkager et al. The observed discrepancy ΔJ pd ≈ (0.20 ± 0.05 Hz) may point to a manifestation of the involvement of light pseudo-scalar (axion-like) bosons with a mass m a ≈ 1 keV/c2 in the spin–spin coupling of the HD proton and deuteron.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, Phys. Rev. Lett. 37, 657 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Ansel’m and Yu. I. Neronov, Sov. Phys. JETP 61, 1154 (1985).Google Scholar
  7. 7.
    S. G. Karshenboim, Phys. Rev. Lett. 104, 220406 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    S. G. Karshenboim, Phys. Rev. D 82, 073003 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    S. G. Karshenboim, Phys. Rev. D 82, 113013 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    S. G. Karshenboim, Phys. Rev. A 83, 062119 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    S. G. Karshenboim and V. V. Flambaum, Phys. Rev. A 84, 064502 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    M. P. Ledbetter, M. V. Romalis, and D. F. Jackson Kimball, Phys. Rev. Lett. 110, 040402 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. I. Neronov and N. N. Seregin, JETP Lett. 100, 609 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    T. Helgaker, M. Jaszunski, P. Garbacz, and K. Jackowski, Mol. Phys. 110, 2611 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    J. W. Emsley, J. Feeney, and L. H. Sutclifft, High-Resolution NMR Spectroscopy (Pergamon, Oxford, 1966) Vol. 1.Google Scholar
  17. 17.
    Yu. I. Neronov, A. E. Barzakh, and Kh. Mukhamadiev, Sov. Phys. JETP 42, 950 (1975).ADSGoogle Scholar
  18. 18.
    M. V. Gorshkov, Yu. I. Neronov, E. N. Nikolaev, Yu. V. Tarbeev, and V. L. Talroze, Sov. Phys. Dokl. 34, 362 (1989).ADSGoogle Scholar
  19. 19.
    N. N. Aruev and Yu. I. Neronov, Tech. Phys. 57, 1579 (2012).CrossRefGoogle Scholar
  20. 20.
    Yu. I. Neronov and A. N. Seregin, Metrologia 51, 54 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    Yu. I. Neronov and A. N. Seregin, Meas. Tech. 53, 926 (2010).CrossRefGoogle Scholar
  22. 22.
    Yu. I. Neronov and A. N. Seregin, J. Exp. Theor. Phys. 115, 777 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    P. Garbacz, Chem. Phys. 443, 1 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    Yu. I. Neronov, in Proc. of the 13th International Youth School-Conference on Magnetic Resonance and Its Applications Spinus-2016, St. Petersburg, Nov. 20–26, 2016, p. 61. http://nmr.phys.spbu.ru/spinus.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Mendeleyev Institute for MetrologySt. PetersburgRussia

Personalised recommendations