Advertisement

Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 210–216 | Cite as

Spin-Dependent Electronic Dynamics in a Hybrid Nonresonance III–V/II–VI Heterostructure

  • V. Kh. Kaibyshev
  • A. A. Toropov
  • S. V. Sorokin
  • I. V. Sedova
  • G. V. Klimko
  • Ya. V. Terent’ev
  • S. V. Ivanov
Solids and Liquids
  • 16 Downloads

Abstract

The processes of electron spin dynamics in a hybrid nonresonance structure, which includes a layer of a diluted magnetic II–Mn–VI semiconductor and an asymmetric quantum well (QW) of a nonmagnetic III–V semiconductor, are experimentally studied. The nonresonance of the structure is determined by the fact that the level of the ground state of the magnetic layer falls into the range of the excited states of the nonmagnetic QW. The electron polarization in the ground thermalized state of QW is found not to depend on the magnetic part of the structure. However, the magnetic part affects the electron polarization in the excited state via spin injection from the magnetic semiconductor and the mixing of the electronic states of the magnetic and nonmagnetic subsystems of the structure. The possibility of controlling the polarization of an electron spin by carrier excitation toward the region of mixed states along with the absence of depolarizing influence of the magnetic semiconductor on carriers in the thermalized state of QW can be applied to design new spintronic devices along with those that use spin injection, optical orientation, and depolarization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Fiederling, M. Keim, G. Reuscher, et al., Nature 402, 787 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    B. T. Jonker, Y. D. Park, B. R. Bennett, et al., Phys. Rev. B 62, 8180 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Toropov, I. V. Sedova, S. V. Sorokin, et al., Phys. Rev. B 71, 195312 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Toropov, Ya. V. Terent’ev, P. S. Kop’ev, et al., Phys. Rev. B 77, 235310 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    F. Liachi, V. Kh. Kaybyshev, A. A. Toropov, et al., Phys. Status Solidi C 9, 1790 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    T. A. Komissarova, M. V. Lebedev, S. V. Sorokin, et al., Semicond. Sci. Technol. 32, 045012 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    G. V. Klimko, E. A. Evropeytsev, A. A. Sitnikova, et al., Acta Phys. Polon. A 126, 1184 (2014).CrossRefGoogle Scholar
  9. 9.
    E. L. Ivchenko, SPIE Proc. 2362, 580 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    S. Pfalz, R. Winkler, T. Nowitzki, et al., Phys. Rev. B 71, 165305 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    M. J. Snelling, E. Blackwood, C. J. McDonagh, et al., Phys. Rev. B 45, 3922 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    M. I. Dyakonov, Springer Ser. Solid-State Sci. 157, 1 (2008).CrossRefGoogle Scholar
  13. 13.
    A. Malinowski, R. S. Britton, T. Grevatt, et al., Phys. Rev. B 62, 13034 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    E. L. Ivchenko, Sov. Phys. Solid State 15, 893 (1973).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. Kh. Kaibyshev
    • 1
  • A. A. Toropov
    • 1
  • S. V. Sorokin
    • 1
  • I. V. Sedova
    • 1
  • G. V. Klimko
    • 1
  • Ya. V. Terent’ev
    • 1
  • S. V. Ivanov
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations