Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 262–275 | Cite as

Flow Mechanisms and Diffusion Combustion of Turbulent Jets

  • V. P. Vorotilin
Statistical, Nonlinear, and Soft Matter Physics


The problem of flow and combustion of turbulent jets of fuel gas in the external medium of an oxidant (air) is solved with regard to the existence of the actual boundary of the turbulent flow region of a jet. Based on the ideas of the friction force of the external flow acting on the boundary of a jet, the entrainment equation for the external medium is derived that closes the system of equations of motion of turbulent jets. The physical meaning of the dissipation rate of the turbulent energy of a jet is interpreted as the work of the friction force. To describe the combustion kinetics, the limit of instantaneous reactions corresponding to the diffusion combustion mode is used. Calculations of the effective reaction rates for reactants and the volumes occupied by them are based on the representation of a turbulent medium as an aggregation of independent turbulent particles—vortices—whose random contacts lead to the mixing and combustion of reacting substances [31]. The concomitant phenomena of flow and combustion are analyzed, including radiation effects. In particular, it is shown that the apparent increase in the combustion temperature with increasing Reynolds number is in fact attributed to the relative decrease of thermal radiation losses. Qualitative agreement is obtained between the results of the theoretical calculations of the length of a combustion torch and experimental data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. I. Kuznetsov and S. A. Sabel’nikov, Turbulence and Combustion (Nauka, Moscow, 1983) [in Russian].zbMATHGoogle Scholar
  2. 2.
    Prediction Methods for Turbulent Flows, Ed. W. Kollman (Hemisphere, New York, 1980).Google Scholar
  3. 3.
    R. W. Bilger, in Turbulent Reacting Flows, Ed. by P. A. Libby and F. A. Williams (Academic Press, New York, 1994).Google Scholar
  4. 4.
    Turbulent Reacting Flows, Ed. by P. A. Libby and F. A. Williams (Academic Press, New York, 1994).zbMATHGoogle Scholar
  5. 5.
    S. B. Pope, in Advances in Turbulence X, Ed. by H. I. Andersson and P. A. Krogstad (Kluwer, Dordrecht, 2004), p. 529.Google Scholar
  6. 6.
    R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, Proc. Combust. Inst. 30, 21 (2005).CrossRefGoogle Scholar
  7. 7.
    J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer, Berlin, 2006; Fizmatlit, Moscow, 2003).zbMATHGoogle Scholar
  8. 8.
    S. P. Burke and T. E. W. Schumann, Ind. Eng. Chem. 20, 998 (1928).CrossRefGoogle Scholar
  9. 9.
    W. R. Hawthorne and D. S. Weddell, in Proceedings of the 3rd Symposium on Combustion and Flame and Explosion Phenomena, 1948, p. 266.Google Scholar
  10. 10.
    H. L. Toor, Amer. Inst. Chem. Eng. J. 8, 70 (1962).CrossRefGoogle Scholar
  11. 11.
    V. A. Frost, Fiz.-Khim. Kinet. Gaz. Din. 15 (1), 1 (2014).Google Scholar
  12. 12.
    G. N. Abramovich, The Theory of Turbulent Jets (Nauka, Moscow, 1984; MIT Press, Cambridge, MA, 1963).Google Scholar
  13. 13.
    L. A. Vulis, L. P. Yarin, Aerodynamics of a Torch (Energiya, Leningrad, 1978) [in Russian].Google Scholar
  14. 14.
    D. B. Spolding, Combustion and Mass Exchange (Mashinostroenie, Moscow, 1985).Google Scholar
  15. 15.
    S. Corrsin and A. L. Kistler, NACA Report No. 1244 (1955).Google Scholar
  16. 16.
    G. Brown and A. Roshko, J. Fluid Mech. 64, 775 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    P. E. Dimotakis and G. L. Brown, J. Fluid Mech. 78, 535 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    J. Westerweel, C. Fukushima, J. M. Pedersen, and J. C. R. Hunt, J. Fluid Mech. 631, 199 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    D. Mistry, J. Philip, J. R. Dawson, and I. Marusic, J. Fluid Mech. 802, 690 (2016).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    B. R. Morton, G. I. Taylor, and J. S. Turner, Proc. R. Soc. London A 234, 1 (1956).ADSCrossRefGoogle Scholar
  21. 21.
    W. C. Reynolds, J. Fluid Mech. 54, 481 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    J. S. Turner, J. Fluid Mech. 173, 431 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    E. Kaminski, S. Tait, and G. Carazzo, J. Fluid Mech. 526, 361 (2005).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Craske and M. van Reeuwijk, J. Fluid Mech. 763, 500 (2015).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Craske and M. van Reeuwijk, J. Fluid Mech. 782, 333 (2015).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge Monographs on Mechanics (Cambridge Univ. Press, Cambridge, 1980).Google Scholar
  27. 27.
    E. S. Shchitenkov, The Physics of Gas Combustion (Nauka, Moscow, 1965) [in Russian].Google Scholar
  28. 28.
    V. E. Kraiko and V. E. Makarov, Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza, No. 1, 146 (1997).Google Scholar
  29. 29.
    A. G. Prudnikov, Combust. Explos., Shock Waves 46, 623 (2010).CrossRefGoogle Scholar
  30. 30.
    Thermodynamical Properties of Individual Substances, Ed. by V. P. Glushko (Akad. Nauk SSSR, Moscow, 1978–1982), Vols. 1, 2 [in Russian].Google Scholar
  31. 31.
    V. P. Vorotilin and Yu. G. Yanovskii, J. Exp. Theor. Phys. 121, 145 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    P. V. Danckwerts, Gas-Liquid Reactions (McGraw- Hill, New York, 1969).Google Scholar
  33. 33.
    Yu. V. Polezhaev, B. A. Vorob’ev, and G. K. Korovin, Inzh.-Fiz. Zh. 83, 298 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations