Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 255–261 | Cite as

Mechanisms of Rotational Dynamics of Chiral Liquid Crystal Droplets in an Electric Field

  • O. A. Skaldin
  • O. S. Tarasov
  • Yu. I. Timirov
  • E. R. Basyrova
Statistical, Nonlinear, and Soft Matter Physics


The dynamics of the orientational structure of chiral nematic (CN) droplets in an isotropic medium in dc and ac electric fields is investigated by the polarized light microscopy technique. It is shown theoretically that the dynamics of rotational processes in these kinds of systems is determined by electroconvective processes developing due to the flexoelectric polarization associated with the initial configuration of the director field in droplets. It is established experimentally that the linear and quadratic regions of dependence of the rotational velocity of droplets on the electric field strength are explained by the above-mentioned mechanisms. Numerical simulation on the basis of the approach developed gives good agreement with experimental data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries (Taylor and Francis, London, 1996).Google Scholar
  2. 2.
    G. E. Volovik and O. D. Lavrentovich, Sov. Phys. JETP 58, 1159 (1983).Google Scholar
  3. 3.
    M. V. Kurik and O. D. Lavrentovich, Sov. Phys. Usp. 31, 196 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    H. G. Graighead, J. Cheng, and S. Hackwood, Appl. Phys. Lett. 40, 22 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    G. M. Zharkova and A. C. Sonin, Liquid Crystal Composites (Nauka, Novosibirsk, 1994) [in Russian].Google Scholar
  6. 6.
    P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).CrossRefGoogle Scholar
  7. 7.
    J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, Mol. Cryst. Liq. Cryst. 165, 511 (1988).Google Scholar
  8. 8.
    S. J. Klosowicz and J. Zmija, Opt. Eng. 34, 3440 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A.M. Parshin, and V. G. Nazarov, JETP Lett. 84, 607 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    D. Semerenko, D. Smeliova, S. Pasechnik, A. Murauskii, V. Tsvetkov, and V. Chigrinov, Opt. Lett. 35, 2155 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. I. Timirov, O. S. Tarasov, and O. A. Skaldin, Tech. Phys. Lett. 33, 209 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    O. A. Skaldin and Yu. I. Timirov, JETP Lett. 90, 633 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    G. I. Maksimochkin, S. V. Pasechnik, and A. V. Lukin, Tech. Phys. Lett. 41, 676 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. I. Timirov, O. A. Skaldin, E. R. Basyrova, and Yu. A. Lebedev, Phys. Solid State 57, 1912 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. I. Timirov, O. A. Skaldin, and E. R. Basyrova, Tech. Phys. Lett. 41, 336 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    O. Lehmann, Ann. Phys. 2, 649 (1900).CrossRefGoogle Scholar
  17. 17.
    P. Oswald and A. Dequidt, Phys. Rev. Lett. 100, 217802 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    T. Yamamoto, M. Kuroda, and M. Sano, Europhys. Lett. 109, 46001 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    N. V. Madhusudana and R. Pratibha, Liq. Cryst. 5, 1827 (1989).CrossRefGoogle Scholar
  20. 20.
    N. V. Madhusudana, R. Pratibha, and H. P. Padmini, Mol. Cryst. Liq. Cryst. 202, 35 (1991).CrossRefGoogle Scholar
  21. 21.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).Google Scholar
  22. 22.
    N. V. Madhusudana, in Modern Topics in Liquid Crystals, Ed. by A. Buka (World Scientific, Singapore, 1989), p. 195.Google Scholar
  23. 23.
    O. S. Tarasov, A. P. Krekhov, and L. Kramer, Phys. Rev. E 68, 031708 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    O. A. Skaldin, Yu. I. Timirov, and Yu. A. Lebedev, Tech. Phys. Lett. 36, 885 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach Sci., New York, 1991).Google Scholar
  26. 26.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  27. 27.
    O. S. Tarasov, PhD Thesis (Univ. Bayreuth, 2003).Google Scholar
  28. 28.
    M. Treiber and L. Kramer, Mol. Cryst. Liq. Cryst. 261, 311 (1995).CrossRefGoogle Scholar
  29. 29.
    J. Bajc and S. Zumer, Phys. Rev. E 55, 2925 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CapitalCity, Montpelier, 1993).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. A. Skaldin
    • 1
  • O. S. Tarasov
    • 1
  • Yu. I. Timirov
    • 1
  • E. R. Basyrova
    • 1
  1. 1.Institute of Molecules and Crystals Physics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations